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In an interesting recent paper, H. KLomp (’58) discusses the theories of
host-parasite interactions. «Two important theories of host-parasite in-
teraction » he says, « have been stated, those of THOMPSON (1922-24) and
of NICHOLSON ».

These two theories according to Kromp differ principally in that in Ni-
CHOLSON’S theory the reproductive rate of the parasite is related to and
dependent on the density of the host while in THOMPSON’S theory it is not,
being constant and limited only by the capacity to produce offspring. This
description of the view of TmHOoMPSON has also been published by G. C.
VArLEY and R. L. EpwarDps ('57).

I propose in this paper to discuss these statements with particular re-
ference to the remarks of Kromp. To simplify the discussion, the theories
will be referred to as those of NicHorsoN and THOMPSON.

In general, KLoMP’s criticism is that neither of the theories provides a
basis for a « host-parasite system in fluctuating balance » which may be in-
terpreted as the persistence in varying numbers of both populations in nature.

Nicholson’s theory, in so far as it relates the reproductive rate of the pa-
rasite to the density of the host, provides a better starting point than the
theory of Thompson. «In the former» says KrLomp, «any disturbance of
the steady state by a changing specific or non-specific mortality factor included
in the system, gives rise to regular oscillations about the steady state. In
the latter every disturbance of the steady state by a specific or non-specific
factor leads to unlimited increase or to extermination». However, Krowmp
does not give unqualified approval to Nicholson’s theory. He suggests that
« Nicholson’s assumptions » may be «realized in pature». Nevertheless he
says, that the regular oscillations, «inherent in Nicholson’s theory of para-
site-host relationships, cannot exist under actual field conditions because
of the changing environmental factors working within the system » and he
states that « the main objection which may be levelled against his (N1CHOL-
SON’s) theory is the ever-increasing amplitude of the oscillations, which has
never been observed in nature ». He rejects a mechanism for the damping
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of the oscillations suggested by NIcHOLSON, saying that « In nature such
a situation can not be ».

In another place, referring to Nicholson’s oscillations, KLomp says, « that
according to the theory, an interaction with increased oscillation always
leads to a peak, followed by a crash to a very low population density ». He
mentions Nicholson’s claim that « when such a situation has been reached
the densities are maintained much below their steady values, the animals
being distributed in small groups ». IHe objects « that under field conditions
many host-parasite systems are not characterized by these phenomena» but
he fails apparently, to note two points: first, that the population values in
the «crash » fall below unity which may be interpreted as extermination,
the final outcome being in fact as in the 1924 formulation by THOMPSON and
depending on the fact that e-= is never equal to zero; second, that the distribu-
tion in small groupsis not a deduction from the theory but an extra-theoretical
intercalation, similar to that made by THoMPSON when he said that anni-
hilation, though produced by the theory is not, in fact to be expected. Klomp’s
misunderstanding is apparently shared by VARLEY and EDWARDS.

Klomp’s view is that the theories of NIcHOLSON and THOMPSON are not
antagonistic but are applicable at different densities of the host. Both fail,
however, since they do not account for the « fluctuating balance » observed
in nature. I think it should be added that NicHOLSON has always regarded
the «fluctuating balance » as the desirable theoretical result and has been
inclined to suggest that his theory produces it. A departure from the steady
state, said NICHOLSON and BAILEY, sets up a reaction « tending to cause a
return to this density ». In fact, however, as KLoMPp points out, and as I have
already said, what happens affer one or more oscillations, is a fall of host
and parasite populations below unity. Figure 7B in Nicnorson’s 1933 paper
depicts this in a single cycle, at the end of which the host population, ac-
cording to my calculation becomes 0.0162.

In Thompson’s theory, according to KLomp, a theoretical « steady state »
or balance, is possible only with the special relation

P h —s

n s

where n = population of the host, p = population of the parasite, h = re-
productive rate of the host, s = reproductive rate of the paragite with the
proviso that « the number of eggs laid per parasite is extremely small » and
in fact equal only to 1. Such a situation says KroMp, « may be rejected
as impossible because there are no parasites with so low a fecundity ». Fur-
thermore, « the existence of a host attended by a single specific parasite and
uninfluenced by any other mortality factor, as assumed by THOMPSON, is
very unlikely to occur in nature ». This same objection can of course be made
to Nicholson’s initial formula. The existence of a parasite depositing only 1
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egg is unlikely, but if a parasite population is stable, the effective reproductive
rate cannot in the long run be greater than 1 in relation to the initial value.
In the 1923 paper cited by KrLoMP, a reduction of the reproductive rate to
unity was given as a possible result of the attack of hyperparasites so that
the process is quite different from the deposition of a single egg. (Le. p. 11).

In some interesting sections of his paper, KLoMP has enquired whether the
intervention of other mortality factors with an effect averaging around some
particular level, would enable the stable condition determined by the rela-
tionship given above, to persist.

It there is a non-specific mortality (i.c. affecting host and parasite equally),
operating at 95%, the effective reproductive rates, in a case where n — 40,
P =10, h = 25, s = 20, only 59%, of the progeny of host and parasite survive,
s0 that the next generation begins, as before with » — 40, p = 10. These
with h = 25, s = 20, produce, as before, 800 hosts and 200 parasites. If
the mortality then falls from 959, to 809, we get 4000 hosts and 800 para-
sites, of which 160 hosts and 40 parasites survive. If the mortality increases
from 959, to 999%,, we eventually get 8 hosts and 2 parasites. Thus stability
is maintained but at a higher level in the first case and at a lower level in the
second case. This point had already been noted by THOMPSON in a paper
published in 1930 (1930, p. 60). «Suppose » said THOMPSON, « we have a
population of one hundred female individuals per unit of area living in a
region where the physical conditions are such that of the six offspring each
individual can produce only one pair survive in each generation. If the inten-
sity of the physical factors suddenly decreases, so that all the six offspring
survive in every generation, in four generations there will be 64,800 female
individuals per unit of area. If then, the physical factor returns to its former
intensity, so that, as before, four out of six offspring are killed, the popu-
lation will again become stable, but at a higher level than before. ‘Similarly,
if the population was depressed below the level of one hundred individuals
per unit of area by an increase in the intensity of the physical factor, it would
remain stabilized at the lower level in spite of the return to normal conditions.

h—s
The basic principle simply is, that the equation 2= (where s = 1)
n 8
can be satisfied provided the ratio between p and » remains equal fo (A — 1) .
In the other examples given by Kromp, this ratio changes and the sequence
of events therefore proceeds according to one or other of the basic equations
given by THOMPSON in the 1922 and 1923 papers. Once the basic relationship

has been altered stability can no longer exist at the same level and if the ratio

P has also been altered it cannot exist at any level. In the first example
n

given by KLoMP he postulates a specific mortality of 759, acting on the host
at the end of the first generation (where we had, n = 40, p = 10, s =1 and
h =5 so that the effective reproductive rate of the host becomes 1.25, and
therefore we get stability). Kromp increases the host mortality in the pro-
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geny to 80%, so that the effective reproductive rate of the host becomes 1.
The number of hosts at the beginning of the next generation therefore falls
to 30, with a reproductive rate restored to 1.25 as before. The position there-
fore corresponds to the equation (11) in THOMPSON’s 3d 1922 paper and
we see that the host is exterminated in 6.21 generations, because the ratio of
p to n is high. In the second example of this section, starting with the same
conditions, KLomp reduces the mortality at the end of the first generation
from 759, to 709, so that the effective reproductive rate of the host is in-
creased to 1.5. We therefore begin the next generation with 50 hosts and
10 parasites. This, again, corresponds to the conditions in equation (11) but
extermination is then seen to be impossible. In fact, if we have s < h, the
condition for a real finite value of ¢ is

P & h —s

n 8

y T
whereas in Klomp’s example we have LA 0.2 and ~——° — 0.25. Klomp’s
n s

final example is with a non-specific mortality operating at 95 %, on the average
and fluctuating at 929, 979%, 939, and 989, in successive generations. He
gives, n =40, p =10, h = 25 and s =20. The equations in the THOMPSON

§ Tl
papers show, that in the particular case where A , with 8>1 which

N

is the position defined by Kvromp, the percentage of parasitism will be con-
stant, but host and parasite will increase indefinitely. With 929, morta-
lity KroMmp obtains reproductive rates of h = 2, s = 1.6; the second genera-
tion then starts with 1,280 hosts and 320 parasites, whose reproductive rates
become h = 0.75 and s = 0.6 so that we get 960 hosts and 192 parasites.
The next generation begins with 768 hosts and 192 parasites, and a 93 %, mor-
tality reduces their reproductive rates to 1.756 and 1.4, so that the progeny
are 1,344 hosts and 268 parasites. Finally we have 1,076 hosts and 268 para-
sites and a 989, mortality reduces their reproductive rates to 0.5 and 0.4
so that we end with 538 hosts and 107 parasites. There is therefore in the
end, a decrease in hosts and parasites, though the percentage of parasitism
does not change, (because the mortality is indiseriminate). The values at the
h—s

beginning of each generation satisfy the equation LR
n

tions will increase (h=1.75, s=1.4) or decrease (h=0.75, s=0.6; h=0.5, s—=0.4)
though the parasite will never exterminate the host. It may be noted that
in the final situation where n=430 and p=108, with effective reproductive
rates restored to h=1.256 and s=1, the values satisfy the equation

sothat the popula-
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where s =1, so that stability has been restored, though at = = 430,
p = 108 instead of n = 800, p = 200.
Nevertheless though the relation

pgh—s

n 8

with s = 1, not precisely « unstable » as KLoMP says, yet it seems too de-
licate and easily wpset to explain, even theoretically, the co-existence of
host and parasite in nature.

However, Klomp’s review of the work of THompsoN like the citation
of VARLEY and EDWARDS is inadequate because he confines himself to these
papers, though references to other papers occur in articles by MiLNE (1957)
and SOLOMON (1949) actually cited by KrLop.

In fact in the 1924 paper on the effect of random distribution THOMPSON

gives equations from which another stable system can be derived. The equa-
tions are

i
@

2

Nyq = n,he™",  where yu, =

=
=

¢
Py = patid,

The equations for stability are
p = nhlogh
go=x]:

In this case it was assumed that though hosts may contain more than 1
parasite, all the parasites it contains emerge. A feature of this system is
that random distribution leads, with higher host densities, to a waste of
killing power by the parasite; for example, if a parasite deposits 10 eggs in
100 hosts 9.5 hosts are killed, if it deposits 100 eggs in 100 hosts, the kill is
only 63.2. In a paper published in 1929, it was assumed that in cases of ran-
dom distribution, only 1 parasite issues from each host attacked. Thus ran-
dom distribution leads to a fall in reproductive efficiency. It is therefore
misleading to say, as KLoMmp doeg, that according to THOMPSON, the parasite
lays a fixed number of eggs, in the sense that the power of increase is con-
stant. The equations in this case are,

Ny = Ny he™He

Pea=n,h (1l —e™")
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and the equations for stability are

S_hlogh
b -1

p=mn{h-—-1).

A stable system would exist if we have n = 50, h = 10, p = 450, s = 2.56.
Applying Klomp’s method and supposing that at the end of each genera-
tion there is an indiseriminate mortality of 209, 609, and 409, averaging
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Curve of % of parasitism given by the equations, n, = n(hi)?, p, = nhti''a, wheren = 40, p = 2, h = 2 = 3,
i =0.5 =a. Ordinates = % parasitism, abcissae = generations:

40, with survivals of.8, .4 and .6, we find, as in his example, that the popu-
lation ratios remain constant at » = 1, p =9. The values of n are, 40, 16,
9.8 and of p, 360, 144 and 85.8; at the end of this series of generations, we
have n = 10.4 and p = 87.5. In every case we have an equation of stability.
In the original system with the final values of » = 10.4, h = 10, p = 87.5,
s = 2.56, the gystem would not be stable (see 1939, p. 367); since we have

: p h—s
s<<hand - >

w8

in the system we are now discussing stability would recur, though at varying
values; that is, the values at the beginning of each generation would be repro-
duced in that generation. The remarks of Krnomp do not therefore apply
perfectly to this theoretical development.

However, this system does not provide a satisfactory solution of the pro-
blem of «fluctuating balance », considered by Kromr as the desirable
objective.

, extermination would occur. It appearé therefore that
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In another (1929) paper by THOMPSON, not cited by KLoMp an approach
to a solution may be found. This paper concerns the part played by parasites
in the control of insects living in « protected situations ». This solution was
suggested in the 1923 paper (section V, p. 11). The situation studied in the
1929 paper was that where a proportion of the host population is inacces-
sible to the parasite. The first examples given were those of the European
Corn Borer, the Codling Moth and the Mediterranean Fruit-Fly; but in the
last paragraph it was pointed out that «in order to be inaccessible to an
enemy, the host need not necessarily live in what are ordinarily called pro-
tected situations, such as tunnels in the substance of plants or heneath the
surface of the soil. The mere fact that it can live in zones in which the para-
site and predator cannot survive, or to which it is not attracted, or maybe
present at times when its enemies are not in a stage when they can attack
it, consistutes an equally efficacious protection ». « Inaccessibility » was
thus very broadly defined and as so defined, includes the inaccessibility
resulting from a fall in host density; since this i precisely a case in which a
given host is in a zone to which ifs parasite is not attracted.

It was shown in the paper cited, that if the number of hosts = n, the
proportion of inaccessible hosts = 4, and the proportion of accessible hosts
= a: (4 + a = 1), the hosts and parasites issuing in the generation are

n, =nhti

p,=nh*i"1la.

Up to the point when the parasite attacks all the available hosts, the
cause of events will be as outlined in the original (1922) system. After this
point the conditions exemplified in the formula will take effect. It should
be noted that in this presentation, one parasite is assumed to issue from each
host attacked, but random distribution is not expressly postulated.

It is clear that when we have hi = 1, n(hi)! = n so that the population
is stabilized. If we have hi > 1 host and parasite will continue to increase.
If we have hi < 1, then n(hi)! will tend to 0 as the value of ¢ increases so that
extermination of host and parasite will result.

In figure 1 a typical curve of the percentage of parasitism is shown, where
the initial values are n == 40, p = 2, the reproductive rates of host and the
same and 2, the proportion of inaccessible and accessible hosts, also the same,
and = 0.5. Since h = 1 and ¢ = 0.5, the populations of host and parasite
will become stabilized when the parasitism reaches 509,. The generation ¢
in which this will oceur is given by the equation

100 p
L =——>
n—p(-—1)
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which, when « = 50 gives ¢ = 19. The numbers of hosts and parasites at
the end of this generation are given by the equations,

ng="ht{m—p@#—1)}

P, = ps'

and are found to be
n = 2,097.152
p = 1,048.576

so that the paragitism has reached 509, .

The curve of this case from the origin at n = 40, p = 2 is shown in figure 1.
Judging from what we know, it is characteristic ot the events which some-
times follow the introduection of a small parasite population into a large
host population. If the host population continued to increase as it has done
in the case of introduced pests having a large suitable area available, the po-
pulations might increase according to the above equations for a considerable
time.

In fact, the pest population may rise to a peak where it is overtaken by
the parasite and suddenly suffers a catastrophic reduction, followed by that
of the parasite — as in the first equations published by ToompsoN. Even-
tually, however the pest may become stabilized and at that level a certain
proportion will be accessible, a certain proportion inaccessible to the para-
site. It is conceivable that these proportions may change and the parasitism
may then rise or fall. Mortality factors may also intervene. For example,
we might have an indiscriminate mortality of 209, where the values were
n=>50,p=25h=2=sand i =05 =a. Other values remaining the
same, the host population would stabilize at 40 and the parasite population
at 25. If the paragite population alone suffered a decline from 25 to 15, while
the host merely maintained its position we would have a sequence of events
as follows:

G1 N1 =50 X 2 =100 of which 50 accessible
P = 156 ¢ 2= 30
Hosts surviving 20 + 50 = 70

G2 N2 =170 ¥ 2 = 140 of which 70 accessible
P2 =830 x 9= 60
Hosts surviving 10 4 70 = 80
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G3 N3 = 80 X 2 = 160 of which 80 accessible
P3=60 22 = 120 reduced to 80 by superparasitism

G4 N4 = 80 X 2 = 160 of which 80 accessible
P4 =80 X 2= 160 reduced to 80 by superparasitism

and thus in a few generations stability would be restored.
If the host population suffered a decline from 50 to 30, other factors re-
maining the same, the sequence of events would be

G1 N1 =30 x 2 = 60 of which 30 accessible
Pl. =25 x 2 — 50 reduced to 30 by superparasitism

N2 =30 X 2 = 60 of which 30 accessible
P2 =30 X 2= 60 reduced to 30 by superparasitism

8o that stability would again be restored.
If a parasite colony is introduced into a large host population, which has
already become stabilized, its progress might be represented by the equation

Ps:(pé't

to the point where it has come to equal the accessible population. It is pos-
sible, however, as THoMPsSON explicitly recognized on several occasions,
that the factor i might be increased by the rarefaction of the host population
produced by the parasite itself. If as a result ki became = 1, then the host
would increase and this would eventually produce more individuals acces-
sible to the parasite so the populations would again, eventually, level off.

It is important to note that in this system, the populations during the
greater part of their existence, may not be in a true balance. They may be
moving toward a balance they never reach or they may be receding from it.
This theoretical conclusion agrees with the views of MriLNe (’57) and to
some extent with those of SoromoxN ('57). Theoretically, the movement
toward balance depends on the possibility that we have hi = 1 rather than
hi > 1 or hi < 1. The condition #i > 1 means an « outbreak » and outbreaks
are exceptional. The condition hi-< 1 means extermination and though
extermination or near-extermination must occasionally occur and perhaps
more often than we realize, it seems also to be exceptional at least for an
entire species. The intrinsic limitations of specific beings, the diversity and
fragmentation of habitats and the change in the character of habitats from
moment to moment, working against the natural reproductive power of the
organisms tend in general, it seems, to bring ki = 1. This principle has
therefore a broader application than to the interrelation of a host and its pa-
rasite.
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A rather more elegant formulation of the ideas developed above was
published by THOMPSON in 1939. There it was assumed that in the situation
where a proportion of the host population is inaccessible, the parasite distri-
butes its progeny among the accessible hosts at random. Using the same
symbols as before, this leads to the equations

Bty
Ngpiy = Ny h(?) -+ ae "i'“‘)

Lo
Py =N, ;rm(l —e )

Commenting on these equations, (1939, p. 372), THomPsON said. If
h=1, N, and P, tend asymptotically to 0; if we have h=>1, N, tends
asymptotically to the value of N i while P, tends to the value of N ha;
if we have hi = or > 1 then the value of N, increases. If we have

nha ah
§ =—1log ( )
1 —hi

f-13

p = nhae "™

and hi < 1 the populations remain stable. If hi were > or = 1 then the po-
pulation of inaccessible hosts would be > n or = k. Even if it were only n
it is clear that the host population could not remain stable because the ac-
cessible host population would always have a positive value, unless the index
of e were indefinitely large, which would require an infinitely large parasite
population. .

The investigation of this case is more difficult than that of the preceding
system. ) )

If we have n =10, p =8, h =4, s =11 (approx.), i = 0.2, a = 0.8,
so that s > h, while hi'= 0.8 and is, therefore < 1, the equations give

N2 =10.04
P2 =" 8:03

so that the populations are immediately stable. However, if we have hi = 1
and h>1 with s = or > h the populations rise, as stated above, but eventually
become stable. The point at which stability is reached depends on the constants.
If we have n =5, p =1, h = s = 10, ¢ = 0.1, @ = 0.9 the populations be-
come stable at a high level in 15 generations with a parasitism of 909, which,
of courseis = a. If we have n =10,p =9, h =8 =10,¢ = 0.1, a = 0.9,
the populations become stable at a low level in six generations, with the same
parasitism. If we have hi = 1, with s = h, the parasitism remains constant
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but the populations rise; if we have hi > 1 with h > s, both populations rise
but parasitism falls; if we have hi < 1, h = s, h > 1 the populations steadily
decrease so that both eventually disappear. 1f we have s << h, even if we have
hi = 1 the populations both rise, but parasitism falls.

Thus the populations tend to stability when we have, hi =1, h>1,
and s = or > h . If h =1 only, the equations for stability become 1nsolub1e
1t is clear that stability cannot then occur since the value on n constantly falls.
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These conditions seem not intrinsically unlikely. If we have h = 1, then
the inroads of a mortality factor might eventually release more favourable
situations, so that h would return to a value greater than 1. If the reprodue-
tive rate of the parasite is less than that of the host, and the host increases,
then the accessible hosts will become more numerous and the value of s will
rise.

Figure 2 shows the graph of parasitism in a case where n =5, p = 1,
h=s =10, i = 0.1 and ¢ = 0.9. Parasitism levels off at 909, but more
gradually than in the preceding system (1).

() Host and parasite curves in a case of this type were published in 1947 (see Biblio-
graphy).



— 216 —

It is clear from what has preceded, that in this system, increases or de-
creases in the values of » and p, whether specific or indiseriminate, will not
prevent the trend toward stability.

It will be noted that the curves for percentage of parasitism, in both of
the preceding systems recall the sigmoid curve so commonly used in popu-
lation theory and developed as an integral of the differential equation

L E—AN)N
E—( )

where F is the net rate of increase, N the number of individuals in the popu-
lation and 4, a constant.

In 1930 THOMPSON suggested the use of a curve of this type in connection
with population problems. On the supposition that when a parasite working
on a host population causes increasing rarefaction of its prey, its own repro-
ductive rate may fall, the relation of parasitism to host density might be
expressed by the autocatalytic equation

K
o=
1 frier

where « percentage of parasitized hosts, K maximum possible percentage
of parasitism, » = rate of increase in parasitism with the host density,

K
and t a factor which equals O when parasitism = 3 that is to say with

a maximum possible parasitism of 1009, would = 0 when « = 50, in
which case the equation becomes

100

o= = b0
14t

The use of this equation need not be restricted to the relation of a para-
gite to its host; it can just as easily be extended the general problem of the
effect of variation in accessible or inaccessible situations on the mortality of
an organism.

The first step is the construction of the curve for «. Taking the value
of K as 100 and putting r = 1, we see that at { = 0, « = 50 and this is the
point from which calculations are made, giving ¢ positive values to the right
of ¢ = 0 and negative to its left (Fig. 3).

If the value of K is set below 100 for example, at K = 50 the value of
x at t = 0 will be 259, and on its right hand section, the curve will tend asym-
ptotically to this value.
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Within the limits of the general mathematical law of the curve the rela-
tionship between density and mortality can be varied. The general law
accepted is, that at both low and high levels, variations in density have
slight effects while at intermediate levels, the effects are well marked. The
parasite would not die out completely at low densities, nor would it exter-
minate the host completely at high densities. One might say also that a free-
living animal would always find some favourable environments even if they
are widely scattered but would not exhaust them even when they are abun-
dant. If we have » > 1, the curve for « rises more steeply than for r = 1;
if we have r << 1 it rises less steeply. An interpretation of this might be,
that when » = 1 mortality is proportional to numbers, if » > 1 it is more
than proportional, if » < 1, numerical changes have relatively little effect.
The following table will give an idea of the differences thus produced. For
r = 2, values beyond ¢ = 5 have not been calculated

17 —6

b ol o8 2B 1 0 AL 48 4T 44 S5 e
aatr=0.2- 23 27 31 35 40 45 50 55 60 64 68 73.0 77.0
aat r=1.0- 0.25 0.67 1.79 4.7 11 26 50 73 88 95 98 99.3 99.75
zatr=2.0 — 0.045 0.33 3 10 12 50 83 90 99.7 99.9 99.99 —-

The curve having been plotted in one of its various forms, a set of regularly
increasing density values is made to correspond with the values, the density
values increasing from the extreme —¢ value to the extreme + ¢ value. These
density values may be numbers but they may also be the ordinary logarithms
of numbers. Without altering the curve, we can space the densities so as to
investigate hypothetical cases where small increases in density produce
large increases in mortality, or where large increases in density are required
for this. Thus with the values for the curve given above where » = 1 we
can set 1 for log density opposite { = — 3 which means a 4.59%, mortality at
a density of 10 and the log density of 2.5 opposite { = 0 which means a 509,
mortality at a density of 170 approximately. Using a number scale, we can
get a density of 10 at ¢ = - 2 which means a 129, mortality, with a den-
sity of 210 opporite ¢ = 0 with a 509, mortality. Using the same number
scale, mortality of 509, at density 10 would give a mortality of about 86.75%,
at a density of 200. Mortalities for host densities are read off from the curve
and rather accurate readings are required, so it is best to draw the curve once
and for all on a large scale. This is particularly important at high densities.

Even with the curve drawn on a large scale, it is difficult, at the high
levels, to read the percentage mortality accurately. More precise figures can
be obtained by calculating the increment or decrement of ¢ ag proportional
to the increment of host density. For example, if at { = 4 the population has
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been set at 100 and at ¢=>5, has been set at 200, we know that a population

100 T T wa mm T

B R AEE

I
EEEENENENN SNEANERENE
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7 8Bt 3T RIEE0T e 34 5 8 7

Fie. III.

K
Curve of the equation, a =1—” ,where K =100 and r =1. Ordinates = 2}

+ e~
mortality, abcissae = values of {, which are + to the
— to the left of 0.

right of 0 and

value of 150 corres-
ponds to t=4.5 or, in
general that an incre-
ase of 10 in the popu-
lation corresponds to
an increase of 0.1 in ¢.
A population of 176
will thus correspond
to 4.76 and inserting
this in the equation
the exact percentage
of paragitism can
be calculated, either
from a table for ex-
ponential functions or
with a good slide rule.

To illustrate the
use of the curve, a
few examples may be
given. Suppose that
we begin with a po-
pulation of 10 indivi-
duals with a repro-
ductive rate of 50
and use a scale where
the log of host densi-
ty -changes by 0.5 for
each change of one
unit in the value of
t, and set the density
scale at 1 (for log

density) opposite t = — 4. The course of events is then as follows:

G1:  10x50= 500-log,, H.D. 2.699

G2: 325X50=16,250- » »  4.2108: 2=91.69
G3: 1365X50=68.250- »  » 4.8388: x—97.95,
G4: 1706 X50=85.300- » »  4.9309: x=97.959,
G5: 1748 X50=87.400- » »  4.9415: x=97.989,
@6: 1765X50=88.250- ».  » 4.9455: 2—98.09,

:x=359%, Number surviving= 325

» =1365
» =1706
» =1748
» =1765
» =1765

Thus the population has risen from 10 to 1765 and has become stabilized

there; with a 989, mortality.
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If we have 400 individuals with a reproductive rate of 3, the population
rises in the 6th generation to 775 and becomes stable at about 780, with a
mortality of about 659, .

If we start with a population of 10 and a reproductive rate of 3 the po-
pulation requires 10 generations to level off and does so at a value of about
782. The population curve here is distinctly sigmoid (Fig. 5).

If we construct the curve for « with » = 1.05 and begin with a population

of 10 and a reproductive rate of 3 (setting a density of 10 opposite t = — 3)
H [ 1 1 } 1
HHH e s
(111 TH i ] 1
1 . I -
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| HH 2 ama: { I
{1 I NN
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. un i
14 i ] I |
I tHH
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Fia. IV.
Curve of a population where the relation between density and mortality is given by the equation of Figure 3
(r = 1.05) with H = 10, o = 4; values set are a density of 10 at { = — 5 with an increase of density of 20 for
1 of ¢

we get a series of oscillations such that the surviving population in the 14th
generation is about the same as the surviving population in the 1st genera-
tion (Fig. 6). Changing the reproductive rate from 3 to 4 produces cycles
of greater amplitude and a drop below unity in the 13th generation (Fig. 4).
With a reproductive rate of 5, we get in the 6th generation, a return to the
value in the 2nd generation,- after which the cycles are perfectly regular
(Fig. 7). It would probably be hard to infer from an inspection of the
population values, that they arise from a combination of constant mathe-

matical laws .
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If, in a case where a balanced position is reached, an independent mortality
factor intervenes, the population proceeds again to a condition of balance.
Forexample, using the value »=1.05 with 20 organisms and a reproductive rate

of 20, balance is rea~

: ched, according to
] my calculations, at
700 T 2,742,865 in 10 gene-
rations. If-then there
! / . ! is a 509, mortality,
600r ] ] : reducing the popula-
: ! tion to 1,371,432, a

i : balance is reached
Q E=ms, in 4 generations at
HHHH 1 2,715,434 which is
o - approximately the
/ 2 1 same value, since the
I sESSEifassiis mortality and there-
300 ! ok ‘ ' fore the survival, was

800 : ammm

400

i i i saseass ] read from a curve
200 prE e Anaanamam | " and some error is
0 i 1 almost inevitable.

L i In the foregoing
100 i e examples, the maxi-
£ mum possible percen-

H HH tage of parasitism ()
1 2 3 4 5 6 7 8 9 1011 6 has been taken as

Fia. V. 100. TIf it is taken at

Curve of a population where the relation between density and mortality is less than 100, the ge-

given by the equation a = % Initial population = 10, reproduc- neral character of the

tive rate = 3; a density of 10 is set opposite ¢t = — 3. mortality curve re-

mains the same and

tends asymptotically to the value of K. The population will then reach a

balance only when we have a relation between reproductive rate (k) and K
such that

Thus if K = 20, h must be equal to or less than 1.25, for eventual balance.
Taking it as 1.25, with an initial population of 50, balance is reached in about
20 generations with a population of 143 and a parasitism of 19.77.

An interpretation of such cases might be that other factors keep the effe-
ctive reproductive rate down to a constant level which would allow continuous
increase, but the addition of the parasitic factor produces eventual balance.
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It is possible to envisage the mathematical process as the interaction of
a parasite and a host. If we assume the existence of enough parasites to
produce, in the first generations, the parasitism given by the curve, the pa-
rasites issuing in each generation can immediately be calculated. For exam-

! . ;
IReS ! i 1 {
ma i } ! |
T AR T T
4 4' 1 1: I—* THEHTE R L T
T THT i o H
5 . : 4_L\' F | -
! ! I \ : \il " ]
e eaaazss /0 iisastsasr, / ; 2
726 NEEEE, e g aadaea 2 gadeeer et e e e e
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SEEEYadEadEs A R
1 T 4] i 7 X1 Y T
f I mEEL I i L8, ]
ImE T 1 1 T I ] ] 1Y I T
2 r = fimas e tasar
e HA A A
5 N T T /
f‘ 1 i L;JI N EEa i =
1 e T sEsEEH b 1 nm T
- ! - :
T e DEEECES ! Emmm T
T : 1 T 1 ‘[ LI .1___.{_. !
1 : ! ; I
e e e ]
I EEaSmmassrEEsmmEm i I
10 11 12 13 14 G

1 2 3 4% 6 7 6 @
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Curve of a population where the relation between density and mortality is derived from the equation

100
riEramee
= generations. The values set are = 4.5% mortality for H = 30, = 379% for H = 540.

Initial population = 10, reproductive rate = 3; Ordinates = population values. ubcissae =

ple, where we have H = 10, h = 3, r =1.05 with a density of 10 set oppo-
site { = — 3 and an increase in density of 20 for each unit of ¢, we get:

Generation 1 2 3 4 b 6 7 8 9 10 11 12 13 14
Hosts 30 80 90 70 105 44.1 104 46.8 108 40.5 99.6 52.2 114 30.9
Parasites 3.3 50 66.6 30 90.3 9.3 88.4 10.8 94.5 7.3 82.2 14.2 103.7 3.4

Hosts 26.7 30 23.4 35 14.7 34.8 15.6 36.0 13.5 33.2 17.4 38.0 10.3 27.5
Emerging

This is an oscillating curve and it will be noted that the reproductive
rate of the parasite is related to the changes in host density for which it is
itself responsible.

Thus, the simple mathematical theory outlined above produces, at least
as a mathematical conclusion either a steady increase to a state of balance,
an oscillating increase to a state of balance, or a series of oscillations whose
character differs according to the values inserted in the equations .

This point seems of interest in connection with the recent discussion
between MILNE, SoLoMON and VARLEY about of the use of the term «density-

Boll. Entom. Bologna, XXIII, 1957. 17
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dependent ». VARLEY, in his contribution (’35) stressed the difference bet-
ween the two models used to explain the way in which animal populations
are stabilized: the VERHULST-PEARL model and the LOTKA-VOLTERRA mode,
used in a special form by N1cHOLSON and BAILEY, VARLEY says that the VER-
HULST-PEARL model considers one species only and assumes that its relative
rate of increase is reduced by rising population density. The mortality
factor which stabili-

T zed a population in
! this way fits best,
H ] says VARLEY, with
; H. 8. SMITH'S term,
1 ek « density-dependent »

e - - = (’35). The LOTKA-
, EEE ] T VOoLTERRA and the
30 [ Samummmma: NICHOLSON-BAILEY
”Tﬂl’ ' models show oseil-

et
e

L ! lating populations
i ! : ] and, says VARLEY,
20F ‘,’ ' Rt M «mortality in the prey
[ 2= [T : ‘ or host species does

] 53 f T HHH not show a simple re-
L__ ‘,‘ ! . \ B t mma lationship to its own
10 r A T : population density ».
t i T He adds, that «the

: ]‘1 rmm ] H++H maximum mortality
0 HH - i | | lags a quarter of a
1 2 3 4 H 6 G cycle behind the po-
pulation density ».

Hence VARLEY in-

Curve of a population where the relation between density and mortality tpoduced the term:
given by the equation of Figure 6 (r = 1.05) with H = 10, =5; a i
density of 10 is set opposite ¢ = — 3. ¢ dela'yed den'SItY'

dependent factor»,
justified also, he thinks by the fact that « the maximum rate of increase of the
predator or parasite is a quarter of a cycle after its own population minimum,
so that the effect is delayed, being density-dependent for two quarters of the
cycle and inverse for the other two» A genuinely « density-dependent »
mortality factor, for VARLEY and also for SoLoMON (’58), is one whose inten-
sity increases with the numerical value of the population in which it acts,
becoming more intense as the population increases and less intense as it de-
creases. An inverse or inversely density-dependent factor, is one whose ef-
feet increases with a decrease in the population on which it acts, and decre-
ases as this population increases.
I do not feel able to agree entirely with the contentions of VARLEY. In
the equation of LoTkA and VOLTERRA and in the NICHOLSON-BAILEY equa-

e
]
I

- R
T

I

Fic. VII.
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tions also, the reproductive rate of the individual predator rises when the
population of the prey rises and falls when the population of the prey falls.
I am satisfied, from my personal discussions with H. S. SMiTH that this is
how he understood the term « density-dependent ». . That the maximum
mortatity produced by the predator lags behind the population density and
that the marimum reproductive rate of the predator is a quarter of a cycle
behind it§ own population minimum, does not fundamentally alter the posi-
tion. It does not seem correct to describe the predator as an inverse factor.
Furthermore, as has been shown above, a curve of the VERHULST-PEARL
type may be derived from cases of the interaction of a host and its parasite.
Here, however, the density-dependence of the reproductive rate of the indi-
vidual predator, though it always exists, may during certain long mathema-
tical intervals, be inconspicuous.

VARLEY considers that when NIicHOLsON says that « for the production
of population balance, it is essential that the controlling factor should act
more severely against an average individual when the population density
is high, and less severely when the population density is low », he is speaking
in terms of the VERHULST-PEARL model, although he « then proceeds to
elaborate his theory of population balance by parasites, which is a form of
model two. NICHOLSON does not point out, that according to his theory,
the host’s mortality due to parasitism reaches its maximum not when host
density is maximal but when it is half way down to ist minimum again.
Hence parasites, according to his theory, do not fit his definition of control-
ling factors which I have quoted ». This criticism seems to be justified but 1
suspect the confusion to which it refers is partly due to the fact that NicHOL-
S0N tends to transfer to the population the attributes of the individual. The
reproductive rate and therefore the killing power of the individual may be
strietly density-dependent but of course, if the parasite population is very
small with respect to the host population it will not be able to respond ade-
quately to the host’s high density. On the other hand, a larger number of
parasites may produce a large host mortality when the host population is well
below its maximum. The individual parasite, according to the assumptions
adopted is still, nevertheless, strictly density-dependent inits reproductive rate.

I must agree with SoLomon (’58) that in the thought of H.S. Smiru the
term « density-dependence » referred to the relation between the individual
reproductive rate of a parasite or predator and the density of its prey. The
fact that the density-dependence in a series of generations may be delayed
if we use the LOTKA-VOLTERRA or NICHOLSON-BAILEY equations has, so far
as I can see, no real bearing on the matter. The numerical sequences obtained
with these equations could not, indeed, be obtained but for the fact that
the concept of the density-dependence of the individual reproductive rate
is incorporated in them as a basic assumption.

As I have already said, the mathematical models discussed in this paper
need not be interpreted as models of host-parasite interaction. They may
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be regarded simply as depicting a relationship between mortality from
unspecified causes and the density of a population and the variations in the
mortality may be regarded as due simply to the inaccessibility to the organism
of the materials necessary for its existence.

Hovever, we need not claim that any one of the special mathematical
formulations so far produced fits all the facts. THOMPSON’S original « model »,
except for the fact that it gives complete annihilation corresponds quite
well to the course of events in certain successful cases of biological control,
and this applies also to certain applications of the formula of NicHOLSON.
This formula, with other values, gives oscillations increasing in amplitude with
an eventual fall to a level below unity. This phenomenon does not appear to
have been observed in nature and certainly is not general though it may occur
exceptionally. On the other hand, it has been produced in experimental
studies by 1. BUrRNETT and by NicHorLsoN himself. The rise of a population
to a level at which it becomes more or less stabilized or a more or less regular
oscillations are much more frequently observed. This is what we expect and
find with many introduced insects and the oscillations we find in such cases
are also fairly similar to those produced by the mathematical formulations in
the preceding sections. The sigmoid curve has also been found in many ex-
perimental studies, such as those of PrEARL and in relation to field popula-
tions, such as the sheep population of Australia studied by DAvipson. It
does appear that it is much easier to find in nature phenomena in agreement
with the laws expressed by this curve than to fit them into the theoretical
picture developed by NIcHOLSON since the curves produced by his formula
cannot really be interpreted as indicating a balance, but rather a lack of
balance, ending in a catastrophe.

I have not attempted, in this short article, to enquire whether a reaso-
nable theory of the « natural control » of organisms can be constructed on
the postulate of « density-dependence ». I propose to return to this later.
In this paper I have limited myself to the suggestion, that in spite of the
statements of certain authors, there are among the various « mathematical
models » proposed for study by THOMPSON, several which produce the « fluc-
tuating balance » regarded as theoretically desirable by ecologists without
producing results that can perhaps be reproduced in laboratory experiments,
but do not seem to correspond to the events we observe in the field. K. E.
F. Warr (’69) and following him, C. 8. Horring (’59), have recently used
one these models (THOMPSON, 1930a, p. 647) but have not referred to the
fact that they were proposed long ago by the present writer. For this reason
and also in order to explore certain aspects of special interest to the writer
this brief review is being published.

I should like to offer my grateful thanks to my old friend Professor
Guipo GRANDI for accepting the paper for publication in the Bulletin of
his Institute; and also to the National Research Council of Canada for covering
some of expenses entailed by the production of the paper.
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RIASSUNTO

Nel presente lavoro I’A. discute le affermazioni di KroMP secondo le quali la teoria
di NicmorLsoN e quella di THoMPsoN, sulle relazioni intercorrenti ira ospite e parassita,
differiscono principalmente per il fatto che, mentre nella prima il tasso di riproduzione
del parassita & correlato e dipendente dalla densitd dell’ospite, nella seconda & costante
e limitato soltanto dalla capacita riproduttiva propria della specie. Egli mette in evidenza
che tra i vari « modelli matematici » che ha proposto, parecchi giungono all’ « equilibrio
fluttuante » considerato come teoricamente desiderabile dagli ecologi.
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