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Abstract

A Quantitative Structure-Activity Relationship (QSAR) model was proposed for estimating the acute toxicity of pesticides to
Apis mellifera. Chemicals were described from the autocorrelation method yielding the computation of descriptors encoding dif-
ferent physicochemical properties. A three-layer feedforward neural network trained by the back-propagation algorithm was used
as statistical tool for deriving the model. The root mean square residual values for the training set (89 chemicals) and external
testing set (11 chemicals) were 0.430 and 0.386, respectively. The usefulness of this type of modeling approach was discussed.
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Introduction

Investigations into the development and use of Quan-
titative Structure-Activity Relationship (QSAR) models
(Karcher and Devillers, 1990; Devillers, 1998) to rap-
idly predict the ecotoxicity of xenobiotics from their
molecular structure and/or physicochemical properties
have increased dramatically over the past decades in or-
der to save time and money in the design of safer
chemicals (Devillers, 2003). These QSAR models are
now integrated in most of the methodological frame-
works designed for estimating the environmental hazard
and risk of organic chemicals (ECETOC, 1998, Walker
and Carlsen, 2002). Surprisingly, while numerous
QSAR models are available for estimating the toxicity
of chemicals to various species of Arthropods, the num-
ber of models derived on the honey bee is very scarce.
Indeed, only Vighi et al. (1991) proposed a structure-
toxicity model for estimating the acute toxicity of pesti-
cides to Apis mellifera. Even if, from a historical point
of view, their model is interesting, its usefulness is lim-
ited because it was only designed for simulating the
toxicity of the organophosphorus pesticides. Further-
more, its statistical validity is highly questionable be-
cause the regression equation was derived from only 15
pesticides and included six molecular descriptors.

Consequently, the aim of our study was to propose a
more powerful model based on an artificial neural net-
work (Devillers, 1996a) to simulate the acute toxicity of
all the families of pesticides to the honey bee.

Materials and methods

Toxicity data
The acute toxicity data (LC50 or LD50) used in this

study (table 1) were retrieved from literature (Atkins et
al., 1981; Tomlin, 1994; EXTONET, 2002). The labo-
ratory LD50 values published by Atkins et al. (1981)
were selected in priority because they were obtained

under well-defined and controlled conditions. The two
other sources of information often provided data with-
out explanation on the experimental conditions in which
they were raised. Consequently, the Atkins data were
exclusively used to constitute the training set of the
model while those from Tomlin (1994) and EXTONET
(2002) were used to complete the training set and to
form the external testing set. In that case, the allocation
of the pesticides between both types of sets was ran-
domly performed. The QSAR model was derived from a
training set of 89 chemicals and its simulation perform-
ances were then tested from an external testing set of 11
pesticides. However, it is worth mentioning that, during
the design of the model, four pesticides were randomly
selected from this testing set to constitute a cross-
validation set allowing to monitor the artificial neural
network and avoid overtraining (Devillers, 1996a).

In the literature, the acute toxicity data were reported
in µg/bee or mg/bee. For modeling purposes, they were
first converted in µmol/bee and then converted into their
negative logarithms.

Molecular descriptors
In order to encode all the structural characteristics of

the pesticides, the autocorrelation method (Moreau and
Broto, 1980a, b) was used. Briefly, the autocorrelation
descriptors are simple 2-D molecular descriptors de-
signed from the hydrogen-suppressed graphs of the
molecules. Autocorrelation vectors (AVs) can be de-
rived for all physicochemical properties which can be
calculated from atomic contributions. They consist of
autocorrelation components (ACs) corresponding to the
different interatomic distances which can be computed
within the studied molecule. The calculation procedure
of an AV for isopentane is illustrated in figure 1.

After their calculation, the AVs have to be truncated
to obtain strings of descriptors of same dimensionality
with a reduced number of null values. This procedure is
very important when the model is designed from sets of
structurally diverse compounds, as it is the case here. In
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the classical algorithm proposed by Moreau and Broto
(1980a, b), the different ACs for a property are obtained
by summations of products (see step 4 in figure 1). This
is annoying when negative atomic contributions have to
be used such as for encoding lipophilicity of some
functional groups. Indeed, in that case the physico-
chemical meaning of the ACs is not straightforward. To
overcome this problem, a slightly different algorithm
was employed (Devillers et al., 1992). With this modi-
fied algorithm, the first component of an AV is simply

obtained by the sum of the positive and negative contri-
butions attributed to the atoms and functional groups
constituting a molecule. Moreover, the calculation pro-
cedure takes into account the signs of the different con-
tributions in order to increase the physicochemical sig-
nificance of the descriptors. Additional information on
the algorithms and the potentialities of the autocorrela-
tion method in environmental QSARs can be found in a
recent publication (Devillers, 1999).

Step 1. Definition of the molecular graph (B) from the formula (A).
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Step 2. Calculation of the shortest interatomic distances d(i,j) (expressed as number of bonds) between each
couple of atoms i and j.

d(1, 1) = 0 d(1, 2) = 1 d(1, 3) = 2 d(1, 4) = 3 d(1, 5) = 3
d(2, 2) = 0 d(2, 3) = 1 d(2, 4) = 2 d(2, 5) = 2

d(3, 3) = 0 d(3, 4) = 1 d(3, 5) = 1
d(4, 4) = 0 d(4, 5) = 2

d(5, 5) = 0

Step 3. Selection of an atomic property G and calculation of the autocorrelation vector AV = (C0, C1, C2, ...,
Cn) corresponding to a given property and for which the components C of order 0, 1, 2, ..., n are calculated by
means of the following equation:

Cn = Σ g(i) x g(j)

where g(i) and g(j) are the contributions attributed to atoms i and j.

If connectivity (i.e.; number of neighbors of each atom) is chosen as atomic property then we obtain:

g(1) = 1, g(2) = 2, g(3) = 3, g(4) = 1, and g(5) = 1

Step 4. Calculation of the components Ti of the vector T encoding the connectivity.

T0 = (1 x 1) + (2 x 2) + (3 x 3) + (1 x 1) + (1 x 1) = 16
T1 = (1 x 2) + (2 x 3) + (3 x 1) + (3 x 1) = 14
T2 = (1 x 3) + (2 x 1) + (2 x 1) + (1 x 1) = 8
T3 = (1 x 1) + (1 x 1) = 2

For isopentane, higher order components equal zero.

T = (16, 14, 8, 2)

Figure 1. Principle of the autocorrelation method.
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The 100 pesticides listed in table 1 were described by
means of four different AVs.

First, from the fragmental constants of Rekker and
Mannhold (1992), for each molecule, an AV represent-
ing lipophilicity (H) was derived. Second, an AV en-
coding molar refractivity (MR) was designed from the
fragmental constants of Hansch and Leo (1979) or di-
rectly from the Lorentz-Lorenz equation (Eq. 1).

MR = n 2

− 1
n 2 + 2

MW
d

x (1)

In Eq. 1, n is the refraction index, d the density, and
MW the molecular weight of the molecule.

Last, AVs encoding the H-bonding acceptor ability
(HBA) and H-bonding donor ability (HBD) of the
molecules were also calculated from Boolean contribu-
tions (i.e., 0/1).

These AVs were calculated by means of AUTO-
COR™ 2.4. For the AVs H, MR, and HBA, a truncature
was performed in order to obtain five ACs (distances 0
to 4). For the HBD AV, only the first component was
selected.

Statistical tool
A multi-layer feedforward neural network trained by

the back-propagation algorithm (BNN) (Rumelhart et
al., 1986, Devillers, 1996a) was used to find nonlinear
relationships between the autocorrelation descriptors
and the toxicity data. Topologically a BNN presents
three types of layers (figure 2):

- one input layer (with a number of neurons corre-
sponding to the number of molecular descriptors),
- one (or more) hidden layer(s) with adjustable num-
bers of neurons,
- one output layer with a number of neurons depend-
ing on the modeled activity or property. This layer
generates the calculated outputs (i.e., acute toxicity
data).

Figure 2. A three-layer feedforward neural network
trained by the back-propagation algorithm (BNN).

The neurons of each layer are connected in the for-
ward direction (i.e., input to output). Each of the input
and hidden layers can have an additional unit called bias
connected as shown in figure 2. Biases allow a more
rapid convergence of the training process (Wasserman,
1989). Before starting the training (learning) process, all
the weights associated with the connections between the
neurons within the network must be initialized to small
random numbers (e.g., [-0.3, 0.3]). This ensures that the
network is not saturated by large values of the weights,
and prevents some training pathologies (Wasserman,
1989). During the training phase, each input pattern of
the training set is presented to the network which gener-
ates a calculated output. At this stage, the network has
performed the feedforward step. An error (Eq. (2)) is
computed from the calculated (opk) and target (tpk) out-
puts for a pattern p.

Ep = ½      (tpk - opk)
2 (2)

For all patterns, we obtain:

E = ½            (tpk - opk)
2 (3)

Weights are adjusted by backpropagating the error
from the output to the input layer. This is performed af-
ter presentation of each training pattern (on-line or sin-
gle pattern training). However, note that calculation
times can be reduced by adjusting the weights once all
patterns have been presented (batch or epoch training)
(Eberhart and Dobbins, 1990). After presentation of a
pattern p, the adjustment of the weights located between
the output layer k and the hidden layer j is performed by
means of the following equation:

∆pwkj = η δpkopj (4)

where η is the learning rate and δpk = (tpk - opk) opk (1 -
opk) for a sigmoid function. Note that a large η value
corresponds to a rapid learning but might also result in
oscillations. If η is set too low, the convergence is diffi-
cult and the risk of falling into and remaining in local
minima is high (Pao, 1989, p. 128; de Saint Laumer et
al., 1991).
The adjustment of the weights located between the hid-
den layer j and the input layer i are calculated in a simi-
lar manner. Rumelhart and coworkers (1986) have
modified Eq. (4) by including a momentum term (α)
which prevents oscillations (Pao, 1989, p. 128;
Wasserman, 1989, p. 54). The adjustment of the weights
between the (n)th and the (n + 1)th steps then becomes:

∆pwji (n + 1) = η δpjopi + α  ∆pwji (n) (5)

Preprocessing the data often plays a key role in the
modeling performances of a BNN (Devillers, 1996a).
Consequently, a classical min/max transformation was
used. All the BNN calculations were performed with the
STATQSAR™ package.

Σp Σ
k
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Results and discussion

Different modeling exercises were performed in order
to determine the number of autocorrelation descriptors
allowing to correctly describe the pesticides and the op-
timal architecture of the BNN yielding good simulation
results with the training and external testing sets.

The AVs of five components encoding lipophilicity
(H), molar refractivity (MR), and the H-bonding ac-
ceptor ability (HBA) of the molecules were first intro-
duced separately as inputs in the neural network. They
were not able to produce acceptable root mean square
residual (RMSR) values (Hair et al., 1992) for both sets.
Addition of HBD0 did not increase the quality of the
modeling results.

Conversely, the use of the 15 autocorrelation descrip-
tors (i.e., H0 to H4, MR0 to MR4, HBA0 to HBA4) as in-
puts in the BNN allowed to obtain satisfying calculated
toxicity values for both sets with three neurons on the
hidden layer and with about 2000 cycles. These results
were interesting but attempts were made to reduce the
number of connections in the BNNs. Indeed, it is always
necessary to have a BNN model with the smallest num-
ber of adjustable parameters and the lowest RMSR er-
rors for the training set and more important, for the ex-
ternal testing set (Devillers, 1996a).

To reduce the number of ACs, the feature selection
option of STATISTICA™ based on a genetic algorithm
(GA) was used. Indeed, GAs, which are rooted in Dar-
win's theory of natural selection and evolution, provide
an alternative to traditional optimization methods by
using powerful search techniques to rapidly locate op-
timal solutions in complex landscapes (Devillers,
1996b). Different top-ranked solutions of ACs were
obtained by modifying the basic parameters of the GA.
These solutions were all introduced in the BNN to test
their ability to derive an acceptable model.

Because a BNN with H1 to H4, MR0 to MR4, and
HBA2 to HBA4 as inputs and 3 neurons on the hidden
layer regularly yielded interesting results, this architec-
ture was selected and refined to find an optimal configu-
ration. This refinement was focused on the number of

cycles, the learning rate (η), and momentum ( α) of the
BNN. The acceptable number of cycles was determined
by means of a cross-validation set of 4 pesticides ran-
domly selected from the external testing set. During this
phase, the BNN was monitored by the cross-validation
set and its simulation performances were only tested on
the remaining 7 chemicals of the external testing set.
After 140 runs with different numbers of cycles and by
randomly changing the composition of the cross-
validation and external testing sets, the optimal number
of runs was set to about 2500 cycles. Thus, this number
of cycles was used to optimize the learning rate (η), and
momentum ( α) from the training set of 79 pesticides
and the original external testing set of 11 pesticides. At
this stage, the problem of overtraining was solved and it
was necessary to secure the design of a BNN model
with a predictive power as high as possible.

From 46 runs, the best modeling results were obtained
from a 12/3/1 BNN with η = 0.5, α = 0.9, and 2492 cy-
cles. The RMSR values for the training and testing sets
were 0.430 and 0.386, respectively. The calculated
acute toxicity data are listed in table 1 for both the
training set (pesticides no. 1 to 89) and the external
testing set (pesticides no. 90 to 100). The distribution of
the residual values is given in table 2. Table 2 clearly
shows the high simulation performances of the selected
BNN model. The number of chemicals not correctly
predicted by the model is very limited. Thus, only four
pesticides have their residual value greater than 0.9 (in
absolute value). In addition, it is important to note that
these chemicals only belong to the training set (table 2).
Thus, EPN (chemical no. 15), profenofos (chemical no.
53), fenazaquin (chemical no. 79), and metconazole
(chemical no. 84) present residual values of 1.10, 0.91, -
0.93, and –0.98, respectively. It is impossible to find an
explanation for these bad predictions because for each
of these chemicals, only one acute toxicity data was
available and hence, an experimental error cannot be
excluded. Nevertheless, inspection of the residuals
clearly shows that the selected model presents a good
predictive power.

Table 1. Observed and calculated acute toxicity data (log 1/C) of pesticides tested on Apis mellifera.

No.* Pesticide Obs. Cal.
1 TEPP 5.16 5.16
2 Bioethanomethrin 4.02 3.45
3 Resmethrin 3.74 3.29
4 Pay-off (Flucythrinate) 3.76 3.70
5 Deltamethrin 3.88 3.69
6 Chlorpyrifos 3.50 2.68
7 Parathion-methyl 3.38 3.55
8 Dieldrin 3.46 3.12
9 Carbofuran 3.17 2.80
10 Permethrin 3.39 3.42
11 Parathion 3.22 2.87
12 Fenitrothion 3.20 2.96
13 Dimethoate 3.08 2.86
14 Methidathion 3.11 2.70
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15 EPN 3.13 2.03
16 Etrimfos 3.04 3.07
17 Aldicarb 2.84 3.15
18 Mexacarbate 2.87 2.51
19 Dicrotophos 2.89 3.15
20 Mevinphos 2.87 2.80
21 Fenthion 2.94 2.50
22 Fensulfothion 2.96 2.98
23 Aldrin 3.02 3.03
24 Monocrotophos 2.80 2.78
25 Diazinon 2.91 2.70
26 Methiocarb 2.78 2.61
27 Fenvalerate 3.01 3.75
28 Famphur 2.90 3.16
29 Azinphos-methyl 2.87 2.47
30 Bendiocarb 2.72 2.58
31 Naled 2.89 2.84
32 Dichlorvos 2.64 2.69
33 Heptachlor 2.85 2.25
34 Isofenphos 2.76 2.71
35 Carbosulfan 2.75 3.43
36 Malathion 2.66 2.74
37 Azinphos-ethyl 2.56 2.61
38 Aminocarb 2.27 2.48
39 Phosmet 2.45 2.27
40 Acephate 2.18 2.76
41 Methomyl 2.10 2.06
42 Propoxur 2.19 2.08
43 Methamidophos 2.01 2.02
44 Stirofos (Tetrachlorvinphos) 2.42 3.22
45 Fenamiphos 2.33 1.89
46 Phosphamidon 2.32 2.27
47 Carbaryl 2.12 1.89
48 Pyrazophos 2.30 2.06
49 Temephos 2.52 2.29
50 Trichloronate 2.22 1.86
51 Crotoxyphos 2.13 2.16
52 Oxydemeton-methyl 1.94 1.87
53 Profenofos 2.03 1.12
54 Terbufos 1.85 1.53
55 Ethoprophos 1.64 1.56
56 Ronnel 1.76 2.42
57 Disulfoton 1.65 1.73
58 DDT 1.76 2.35
59 Ethiofencarb 1.52 1.54
60 Thiodicarb 1.70 2.12
61 Sulprofos 1.65 2.05
62 Fonofos 1.45 0.72
63 Chlordane 1.67 2.15
64 Phosalone 1.61 2.23
65 Phorate 1.40 1.82
66 Oxamyl 1.33 1.77
67 Carbophenothion 1.42 2.13
68 AC 303,630 3.31 2.87
69 Alanycarb 2.70 2.37
70 Chlorpyrifos-methyl 2.93 2.97
71 Bensultap 1.22 1.13
72 Azamethiphos 3.51 3.86
73 EPTC 1.24 1.23
74 Napropamide 0.35 0.49
75 Dicloran 0.06 0.40
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76 Diethofencarb 1.13 1.01
77 Dithiopyr 0.70 0.47
78 Orbencarb 0.40 0.79
79 Fenazaquin 1.57 2.50
80 Quinalphos 3.63 3.62
81 Pyridaben 2.82 2.80
82 Mephosfolan 1.89 1.94
83 Imazalil 0.87 1.59
84 Metconazole 0.52 1.50
85 Pyridaphenthion 3.63 3.25
86 Pyrifenox 0.70 0.90
87 Quizalofop 0.84 1.09
88 Tebutam 0.37 0.40
89 Thiometon 2.64 2.15
90 Cypermethrin 4.08 3.66
91 Diafenthiuron 2.26 2.79
92 Tralomethrin 3.74 3.74
93 Propargite 1.37 1.82
94 Diclomezine 1.41 1.35
95 Phenthoate 3.43 2.91
96 Piperophos 1.07 1.25
97 Silafluofen 2.91 2.76
98 Propachlor -0.17 0.39
99 Tralkoxydim 0.79 0.65
100 Propisochlor 0.45 1.01

*Pesticides no. 1 to 89 have been used as training set and pesticides no. 90 to 100 as external testing set for estimat-
ing the simulation performances of the model.

Table 2. Distribution of residuals (absolute values), differences between the experimental and the calculated toxicity
data computed from the model.

Range Training set Testing set
<0.3 48 5
0.3 to 0.6* 27 6
0.6 to 0.9* 10 0
0.9 to 1.2* 4 0
≥1.2 0 0

*Excluded value

Other BNN models were designed from different
training and testing sets of 89 and 11 pesticides, respec-
tively. However, in all cases, as previously indicated in
the experimental section, the toxicity data coming from
Atkins et al. (1981), due to their coherency, were only
included in the training set. No significant differences
were found in the simulation results.

For comparison purposes, attempts have also been
made to derive a model from the partial least squares
(PLS) regression method (Devillers et al., 2002), which
is widely used in QSAR studies due to its ability to
work well with large sets of descriptors (Devillers and
Doré, 2002). Different procedures proposed by STA-
TISTICA™ were experienced. Unfortunately, no satis-
fying results were obtained. Indeed, in all cases, very
large outliers were obtained for a huge number of pesti-
cides.

These results are not surprising. Indeed, the relation-
ships between the structure of the pesticides and their
acute toxicity to bees are not straightforward. Conse-
quently, only an artificial neural network appears suited

to derive complex relationships between the autocorre-
lation descriptors and the toxicity data. In addition, it is
worth mentioning that, even if standardized protocols
are used to test the acute toxicity of pesticides to honey
bees, the obtained data generally suffer from a high de-
gree of variability due to the experimental conditions,
the endpoint recorded, the biological material, and so
on. Because, it is well known that some degree of fuzzi-
ness in the data increases the modeling performances of
a BNN (Devillers, 1996a), this also explains the good
simulation results obtained with this nonlinear statistical
tool.

As long as pesticides are used to protect crops, bee-
keepers complain about their potential adverse effects
on bees (Devillers and Pham-Delègue, 2002). Useful
testing guidelines have been developed for estimating
the acute toxicity of pesticides to bees prior their com-
mercial use. Even if they provide invaluable informa-
tion, they are costly, time expensive, and require trained
people. The proposed QSAR model does not suffer
from these limitations. In addition, it can be used to es-
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timate the toxicity of a pesticide not yet synthesized.
This could be very useful when attempts are made to
design safer pesticides. Consequently, the proposed
QSAR model must be seen as a complementary tool to
the existing laboratory tests to better estimate the ad-
verse effects of pesticides to honey bees.

Last, it is obvious that during their foraging activity,
the honey bees are not only contaminated by pesticides
but also by all kind of xenobiotics for which no experi-
mental toxicity data exist. It is expected that this QSAR
model should be easily refined to also simulate the acute
toxicity of these pollutants.
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