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Abstract 
 

Trichogrammatoidea lutea Girault (Hymenoptera Trichogrammatidae) is an egg parasitoid of the African bollworm Helicoverpa 

armigera (Hubner) (Lepidoptera Noctuidae) in southern Africa. To determine the potential of T. lutea as a biological control agent 

of H. armigera, longevity, daily parasitism, fecundity, number of progeny per egg and sex ratio with regard to maternal age were 

examined under laboratory. The maximum longevity of T. lutea male and female adults was 14 and 16 days, respectively. Repro-

duction by T. lutea commenced on the day of eclosion and lasted for 14 days. The mean realized fecundity of T. lutea was 52 

offspring per female. Daily fecundity and sex allocation depended on maternal age. Daily percentage parasitism and fecundity were 

highest on the day of eclosion and decreased with female age until no egg was parasitized from day 15. The sex ratio was female-

biased during the first three days, and thereafter became male-biased from day 4 until day 14. The number of progeny per host egg 

was also highest at 2.2 on the day of eclosion, then decreased to 0.9 on day 8 and thereafter increased to 2.0 on day 13. The overall 

sex ratio of T. lutea was approximately 1:1. The net replacement rate (R0), mean generation time (T) and intrinsic rate of population 

increase (rm) of T. lutea were determined at 25.5, 9.8 and 0.3, respectively. Findings from this study show great potential of T. lutea 

as a biological control agent of H. armigera. 
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Introduction 
 

Egg parasitoids in the genera Trichogramma and 

Trichogrammatoidea (Hymenoptera Trichogrammatidae) 

have been successfully used in biological control pro-

grams against different pests, particularly Lepidoptera 

(Greenberg et al., 1996; Adom et al., 2020; Karimoune 

et al., 2020; Zang et al., 2021). One reason is the easiness 

to mass rear them on factitious hosts and their high effi-

ciency in suppressing pest population before any damage 

is caused (Li, 1994; Greenberg et al., 1996; Para, 1997; 

Mills, 2010; Wang et al., 2014; Jalali et al., 2016). 

The ability of a parasitoid to suppress a pest population 

is influenced by its fecundity and by the sex ratio of its 

progeny (Smith, 1996). Fecundity is one of the major bi-

ological attributes that influence the ecology and popula-

tion dynamics of insects (Price, 1997). Herein, fecundity 

is defined as the lifetime reproductive capacity of a para-

sitoid in terms of the total number of eggs produced 

(Abrahamson, 1989; Godfray, 1994; Mills and 

Kuhlmann, 2000). 

Sex ratio in parasitoid cultures during mass rearing is 

one of the major problems affecting the success of bio-

logical control programmes. The majority of parasitic 

Hymenoptera have a haplo-diploid reproduction, where 

males develop from unfertilized eggs through a form of 

parthenogenesis known as arrhenotoky, while females 

develop from fertilized eggs (Godfray, 1994; Gordh et 

al., 1999; Hawkins and Cornell, 1999). Hence, female is 

able to determine the sex of the offspring through the reg-

ulation of sperm access to eggs, from spermatheca where 

it is stored after copulation (Godfray, 1994; Gordh et al., 

1999; Hawkins and Cornell, 1999). Female age of para-

sitoid is one of the important factors known to influence 

sex allocation during parasitism (Godfray et al., 1991). 

While bacterial endosymbionts such as Wolbachia is 

also known to induce thelytoky (parthenogenesis in 

which females are produced from unfertilized eggs) in 

parasitoids, several studies have demonstrated that even 

though the sex ratio of the progeny becomes more female 

biased, the fitness of parasitoid is negatively affected 

(Yang et al., 2008; Liu et al., 2018; Zhou et al., 2019). 

Trichogrammatoidea lutea Girault (Hymenoptera 

Trichogrammatidae) is indigenous to southern Africa 

(Parson and Ullyett, 1936; Nagarkatti and Nagaraja, 

1977; Sithanantham et al., 2001). It is a facultative gre-

garious polyphagous egg parasitoid of Lepidoptera pests 

(Kfir, 1981), including the African bollworm Heli-

coverpa armigera (Hubner) (Lepidoptera Noctuidae) 

(Parson and Ullyett, 1936; Jones, 1937; Kfir and Van 

Hamburg, 1988; Van Den Berg et al., 1993; Bourarach 

and Hawlitzky, 1989; Fry, 1989; Haile et al., 2000; Van 

Hamburg, 1981), the spotted stemborer Chilo partellus 

(Swinhoe) (Lepidoptera Crambidae) (Nagarkatti and Na-

garaja, 1977; Kfir, 1990) and the codling moth Cydia po-

monella (L.) (Lepidoptera Tortricidae) (Pettey, 1916; 

Wahner, 2008). Several studies assessed the suitability of 

T. lutea as a biological control agent against H. armigera 

and C. pomonella from the early 1900s to early 2000s 

(Parson and Ullyett, 1936; Jones, 1937; Kfir, 1982; Kfir 

and Van Hamburg, 1988; Wahner, 2008; Mawela et al., 

2010; 2013). However, no detailed study is available on 

its age-related reproductive biology, and the same is true 

for life tables. Knowledge on the age-related reproduc-

tive biology of T. lutea is important both for the develop-

ment of mass rearing protocol and to assessing its poten-

tial for augmentative biological programs. In this study, 

we determined longevity of adults, age-specific fecundity 

(total number of viable offspring produced by a female 

parasitoid per day) and realized fecundity (total number 
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of viable offspring produced during the lifetime of a fe-

male), daily parasitism, number of progeny per egg and 

sex ratio of the progeny of T. lutea on eggs of H. armi-

gera. In addition, the life table of T. lutea was also con-

structed to estimate population dynamics by net replace-

ment rate (R0), generation time (T) and intrinsic rate of 

population increase (rm). 

 

 

Materials and methods 
 

Insect cultures 
T. lutea and H. armigera were obtained from cultures 

from the insectary of the ARC-Plant Health and Protec-

tion (ARC-PHP) at the Rietondale campus in Pretoria, 

South Africa (25°43'38.90S 28°14'14.23E). Cultures 

were maintained as described by Mawela et al. (2010).  

T. lutea was reared on eggs of H. armigera. Prior expo-

sure to T. lutea, the eggs of H. armigera were UV-irradi-

ated for 15 minutes with a UV light tube (TUV 

30W/G30T8, Philips, Holland; 254 nm; in a fitting with 

a reflective aluminium backing) to limit cannibalism 

which is common in larvae of H. armigera (Kfir and Van 

Hamburg, 1988; Mawela et al., 2010). 

 

Longevity and reproductive biology of T. lutea 
To determine age-specific reproductive biology of        

T. lutea, newly emerged adults (less than 24 hours old) 

were paired (1 male and 1 female) and transferred to 

small glass vials (85 mm high × 10 mm diameter), one 

pair per vial. Thin streaks of honey were added in the vi-

als for adult T. lutea to feed on. Each T. lutea pair was 

supplied daily with a batch of 20 UV-irradiated eggs       

(< 24 h-old) of H. armigera on filter paper until all para-

sitoids (male and female) died. This was replicated 40 

times. The experiment was carried out in an incubator 

(LabconTM LTGC 20, Laboratory Marketing Services 

CC, Roodepoort, South Africa) maintained at 25 ± 1 °C, 

60 ± 2% RH and 16L:8D photoperiod. The date and time 

of death of each parasitoid were recorded daily. Because 

T. lutea is a facultative gregarious parasitoid, percent par-

asitism was determined by the number of eggs that turned 

black (Kfir, 1981), while fecundity was determined as the 

total number of viable offspring produced per female in 

a vial. Progeny production, i.e. age-specific fecundity, 

and the sex ratio in each replicate were determined daily. 

Average realized fecundity was estimated by dividing the 

total number of progeny by the number of females. 

 

Life table 
A cohort life table was constructed using the data on age-

specific survivorship (lx) of T. lutea female on H. armigera 

and the number of female offspring produced per female 

per day until death (mx). The population growth statistics 

calculated include net replacement rate [R0 = ∑(lx×mx)], 

mean generation time [T = ∑(x×lx×mx)/∑(lx×mx)], and 

intrinsic rate of population increase [rm = logeR0/T] 

(Price, 1997). 

 

Data analysis 
The data on male and female longevity of T. lutea were 

analysed by using the analysis of variance (ANOVA) for 

unbalanced design. Where differences were significant   

t-probabilities of pairwise differences were computed to 

separate means at P < 0.05. Relationships between per-

cent parasitism, fecundity, number of progeny per egg 

and sex ratio of progeny to age of T. lutea were deter-

mined using regression analyses weighted for number of 

females per age. Data for females older than 11 days were 

excluded from the analysis in order to stabilize the vari-

ance. The significance level was set at P < 0.05. The data 

were analysed using GenStat ® (Payne et al., 2007). 

 

 

Results 
 

T. lutea females lived significantly longer than males 

with a mean longevity of 8.6 and 5.6 days, respectively 

(F1,78 =12.92, P < 0.01) (figure 1a). The observed longev-

ity for females ranged from 1-16 days while that of males 

ranged from 1-14 days. T. lutea parasitized the eggs of  

H. armigera from the day of eclosion. Percent parasitism 

was highest on day 1 (34%) and decreased to 1.6% on 

day 14 (figure 1b). No eggs were parasitized by T. lutea 

after 14 days. 

The highest mean daily fecundity per female was 14 on 

the first day and decreased significantly to less than 2 

with an increase in age of the females (figure 2a). The 

average realized fecundity of T. lutea was 52 offspring 

per female, ranging from 1-93 offspring per female. The 

net replacement rate (R0) was estimated at 25.5; genera-

tion time (T) was 9.79 days and intrinsic rate of increase 

(rm) was 0.33. The number of progeny per egg was high-

est at 2.2 on the day of eclosion, then decreased to 0.9 on 

day 8, and increased up to 2.0 on day 13 (F13,247 = 18.24, 

P < 0.001) (figure 2b). 

The daily sex ratio of T. lutea progeny was significantly 

female-biased from day 1 to day 3 and thereafter male-

biased reaching 100% males from day 9 to day 14 (figure 

2c). However, the overall percentage of male and female 

progeny of T. lutea on eggs of H. armigera was not sig-

nificantly different, with 51% males and 49% females. 

 

 

Discussion 
 

Biological attributes of parasitoids directly influence 

their success as biological control agents (DeBach and 

Rosen, 1991; Smith, 1996; Hawkins and Cornell, 1999; 

Mills, 2005; Zang et al., 2021). Knowledge of the repro-

ductive biology of T. lutea is important for the develop-

ment of mass rearing systems and biological control pro-

grams (Etzel and Legner, 1999; Gordh et al., 1999; 

Kalyebi et al., 2006; Mawela et al., 2013). In this study, 

T. lutea longevity of males and females, as well as daily 

parasitism, fecundity, number of progeny per egg, and 

sex ratio with regard to age of female parents were deter-

mined. T. lutea females lived longer than males, and this 

is common in Hymenoptera as males are mainly neces-

sary for mating (Godfray, 1994). Our results on longevity 

of T. lutea are in line with 9 days reported by Wahner 

(2008) at 25 °C and also 7.6 and 8 days at 22 and 15 to 

18.5 °C, respectively reported by Jones (1937). The lon-

gevity of Trichogramma pretiosum Riley (Hymenoptera  
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Figure 1. (a) Survival of males and females T. lutea. (b) Relationship between percentage parasitism and maternal age 

of T. lutea parasitizing eggs of H. armigera (y = 33.18 − 2.46x, R2
a = 0.85, P < 0.001). 

 

 

Trichogrammatidae) females of 8.5 days at 28 °C re-

ported by Navarrese and Rodolfo (1997) and also that of 

Trichogrammatoidea bactrae Nagaraja (Hymenoptera 

Trichogrammatidae) with 7.9 days reported by Perera et 

al. (2015) at 28 °C was also similar to that of T. lutea 

female in the present study. 

T. lutea did not have a pre-oviposition period since re-

production commenced on the day of eclosion. The repro-

ductive period of T. lutea lasted for 14 days with no eggs 

parasitized from day 15 onwards. Most Trichogramma 

species are known to be pro-ovigenic (Hawkins and Cor-

nell, 1999). Jervis et al. (2001) reported that the mean 

lifespan of synovigenic species (26 days) is greater than 

that of pro-ovigenic ones (9 days), which is slightly sim-

ilar to the 8.6 days for T. lutea female. Although 20 eggs 

were presented to T. lutea daily, 100% parasitism was not 

achieved even on the day of eclosion. This suggests that 

T. lutea did not emerge with a full egg complement, but 

rather continued to mature eggs with age. Such parasi-

toids are referred to as weakly synovigenic (Jervis et al., 

2001). 

Daily parasitism and fecundity are not the same in the 

present study because T. lutea is a facultative gregarious 

parasitoid (Kfir, 1981). Nonetheless, daily parasitism and 

fecundity followed the same pattern, and were highest on 

the day of eclosion, then decreased progressively with the 

age of the female. The levels of parasitism in this study 

are similar to those reported by Garcia et al. (2001) for 

Trichogramma cordubensis Vargas et Cabello (Hyme-

noptera Trichogrammatidae) and Perera et al. (2015) for 

T. bactrae, where the total number of parasitized eggs de-

creased with the age of the female parasitoids. Similar 

trends were reported on Trichogramma brassicae 

(Bezdenko), T. pretiosum and T. carverae Oatman et 

Pinto (Steidle et al., 2001). However, the lifetime fecun-

dity of the three Trichogramma species as reported by 

Steidle et al. (2001) (36.4, 22.8 and 9.6, respectively) was 

lower than that of T. lutea (52) in this study and that of  

T. bactrae (55) reported by Perera et al. (2015). 

Wahner (2008) found a net replacement rate (R0) and 

intrinsic rate of population increase (rm) of T. lutea of 

11.92 and 0.26, respectively, on C. pomonella at 25 °C, 

and both were lower compared to 25.5 and 0.33, respec-

tively, reported in the present study at the same tempera-

ture. However, the mean generation time (T) of 9.4 days 

reported by Wahner (2008) was similar to that observed  
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Figure 2. Relationships between maternal age of T. lutea and (a) daily fecundity per female (y = −1.37 + 17.59 × e−0.183x, 

R2
a = 0.92, P < 0.001), (b) number of progeny per egg of H. armigera (y = 2.410 – 0.2717 × x + 0.01525 × x2,  

R2
a = 0.72.6, P < 0.001) and (c) male and female progeny (male: y = 5.17 − 3.62 × x + 1.685 × x2 − 0.242 × x3 + 

0.01076 × x4, R2
a = 0.69, P = 0.021; female: y= −0.462 + 17.86 × e−0.4431x, R2

a = 0.98, P < 0.001). 

 

 

in this study. The net replacement rates of T. near lutea 

from low, medium and high altitudes reported by Kalyebi 

et al. (2006) on Corcyra cephalonica (Stainton) (Lepi-

doptera Pyralidae) at 25 °C were also lower than those of 

T. lutea in this study. Amongst other factors, differences 

in estimates of life table parameters of T. lutea reported 

by Wahner (2008) and the present study could be a result 

of different host species used (Pratissoli and Para, 2000). 

T. lutea females produced both male and female off-

spring, showing that the female parents had been success-

fully inseminated (Mackauer and Völkl, 2002). However, 

the sex ratio of the offspring changed from female-biased 

during the first three days to male-biased between day 4 

and 8 and thereafter 100% males from day nine. Earlier 

studies have shown that if female parasitoids are supplied 

with an unlimited number of hosts in the laboratory, the 
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sex ratio changes and becomes increasingly male-biased 

due to sperm depletion (Godfray, 1994; Pérez-Lachaud 

and Hardy, 1998). The decrease in the daily number of 

offspring produced towards the end of the experiment 

could be due to egg depletion (Gordh et al., 1999). In 

general, the two most important limiting factors for re-

production in parasitoids are likely to be the number of 

mature eggs for synovigenic and the time available for 

pro-ovigenic (Godfray, 1994). T. lutea allocated more fe-

male offsprings on the first three days after eclosion. Fur-

thermore, it was advantageous for T. lutea females to al-

locate fertilized eggs at an early age, as this will result in 

high number of daughters. The number of progeny 

emerging per parasitized egg decreased from day 1 to day 

8 and thereafter increased up to day 14. 

In conclusion, T. lutea did not undergo a pre-oviposi-

tion period, it emerged with most of its mature eggs, and 

had a short lifespan and reproductive period. T. lutea was 

presumed to be a weakly synovigenic, because there was 

no pre-oviposition period and 100% parasitism was not 

achieved on the day of eclosion, showing that only a pro-

portion of eggs was matured. The results indicate a strong 

influence of male and female longevity together with ma-

ternal age on daily parasitism, fecundity and sex ratio. 

The high net replacement rate of T. lutea in the present 

study shows a good prospect for using this parasitoid as 

biological control agent. For efficient mass rearing of T. 

lutea, parasitoids should not be kept more than four days 

in cultures because the progeny becomes male-biased 

from the fourth day of the experiment while achieving 

low parasitism. Results from this study show great poten-

tial of mass rearing T. lutea for augmentative biological 

control programmes. 
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