
Bulletin of Insectology 74 (1): 147-160, 2021 
ISSN 1721-8861              eISSN 2283-0332 

 

 

Developing a smart trap prototype 
equipped with camera for tortricid pests remote monitoring 

 
Michele PRETI

1,2, Christian MORETTI
2, Gabriele SCARTON

3, Giovanni GIANNOTTA
3, Sergio ANGELI

1 
1Faculty of Science and Technology, Free University of Bozen-Bolzano, Italy 
2ASTRA Innovazione e Sviluppo Test Facility, Faenza, Italy 
3FOS S.p.A., Bolzano, Italy 
 
 
 
Abstract 
 
The effectiveness of insect pest management programs depends on the availability of reliable and updated information about the 
pest infestation status. Action thresholds derived by captures in monitoring traps are a pillar of modern integrated pest management 
programs to trigger and optimize the timing and usage of insecticide sprays. However, weekly trap inspections in field may lead to 
a delayed intervention and imply a certain labour cost. Such issues have led to some early adoption of automatic trap-based moni-
toring exploiting new technology. This work aimed to develop an innovative ‘smart’ trap prototype capable to monitor by remote 
insect pests, selecting codling moth, Cydia pomonella (L.), in pome fruit crops as case study. Smart trap components (hardware) 
were chosen considering the environmental sustainability and an economic evaluation of the trap prototype cost is provided together 
with the cost-benefit analysis of the remote pest monitoring. A detection algorithm (software) to automatically identify and count 
codling moth was developed by using open-source programs. The smart trap prototype was evaluated in field experiments. Quali-
tative parameters related to automatic pest identification such as accuracy, sensitivity and precision were calculated according to 
both false positive and false negative counts. This work describes the different steps necessary to develop smart traps for insect 
pests monitoring, showing the preliminary field results obtained with the proposed prototype. The smart trap efficiency in capturing 
codling moth was similar to a standard monitoring trap and the pictures provided a sufficient resolution to manually validate moth 
captures observing the images by remote. Nevertheless, the detection algorithm failed to automatically provide a trustworthy capture 
count data by remote because, using deep learning technique, thousands of pictures are usually required for the algorithm training 
towards the target species in order to reach a sufficient level of reliability. This work provides the basis for a further wider devel-
opment of such smart trap prototypes worldwide. 
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Introduction 
 
Among the insect species causing economic losses in 
pome fruit crops, codling moth Cydia pomonella (L.) 
(Lepidoptera Tortricidae) is one of the major key pests. 
In fact, if not properly managed with complementary and 
integrate practices including chemical, mechanical and 
(micro)biological control, together with population sup-
pression techniques such as mating disruption (MD) or 
sterile insect, codling moth infestations can severely im-
pact pome fruit productions (Knight et al., 2019a; Kadoić 

Balaško et al., 2020). According to its biological require-
ments and to the climatic and environmental parameters 
reported in different geographical areas, it has been 
demonstrated that all the continents (with the exception 
of Antarctica) are suitable for codling moth development 
and its actual distribution covers the main pome fruit 
crops productive areas worldwide (Jiang et al., 2018). 
The severity and global importance of this tortricid spe-
cies have driven uncountable research studies on its man-
agement, with a turning point 50 years ago thanks to the 
identification of the major component of female codling 
moth sex pheromone, (E,E)-8,10-dodecadien-1-ol (com-
monly known as codlemone) (Roelofs et al., 1971). Now-
adays codlemone is largely utilized in orchards to: (i) rec-
ord the male flight activity through monitoring trap cap-
tures; (ii) disrupt the adult behaviours by interfering with 
the frequency and timing of mating through the use of 
MD (Witzgall et al., 2008; 2010). 

A reliable codling moth monitoring is essential to 

properly and timely counteract the infestations, and usu-
ally trap counts are used both to determine the need to 
spray and to optimize spray timings. In orchards not 
treated with MD, the codlemone is usually applied alone 
to track the males population and indirectly females and 
offspring information are calculated, exploiting phenol-
ogy models (Jones et al., 2013). Nowadays a wide 
knowledge has been achieved regarding codlemone usage 
for monitoring. For instance, recent studies evaluated the 
behaviourally effective plume reach of a standard sex 
pheromone-baited trap (< 5 m), the trapping area of a sin-
gle trap (ca. 21 ha) and provided data to convert relative 
pest captures into absolute pest densities (1 adult trap−1 
corresponds approximately to 5 adults ha−1) (Adam et al., 
2017). On the other hand, in orchards treated with the sex 
pheromone to perform MD, for monitoring purposes the 
codlemone is usually combined with other attractive vol-
atile organic compounds acting as kairomones, to over-
come the MD interference. The major compound practi-
cally applied since its discovery is the pear-derived kair-
omone (E,Z)-2,4-ethyl decadienoate (commonly known 
as pear ester) (Light et al., 2001). Pear ester attracts both 
codling moth sexes and the microbial volatile acetic acid 
proved to be a potent synergistic for moth attraction in 
several studies (Knight et al., 2018). Therefore, to date 
there are effective options to monitor this target pest, con-
sidering both sexes and regardless the application of MD. 

Nevertheless, a limit of the traditional insect pest mon-
itoring is due to the low spatial and temporal resolution 
that is usually achieved with standard monitoring traps. 
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Due to labour cost issues and required field visits to check 
insect pest captures, traps are usually deployed in acces-
sible locations and in limited numbers. Thanks to the ad-
vent of new technologies (including remote sensing, elec-
tronics and informatics), the panorama of tools available 
has largely improved offering a variety of systems to au-
tomatically detect and monitor insect pests (Cardim Fer-
reira Lima et al., 2020). Among such tools, a recent re-
view by Preti et al. (2021a) extensively discusses the use 
of camera-equipped traps for insect pest monitoring. 
Smart traps that take pictures and exploit images to pro-
vide count data can be classified according to the level of 
trap automatization in semi-automated or fully automated 
systems, as described in Sciarretta and Calabrese (2019). 
Semi-automated traps require a manual count of the cap-
tures by human operator in remote, as reported in Guar-
nieri et al. (2011) for codling moth and in Ünlü et al. 
(2019) for European grapevine moth, Lobesia botrana 
(Denis et Schiffermuller). Automated traps can rely on 
detection algorithm capable of automatically identify and 
count the captured insects by means of image processing 
analyses, as reported by Lucchi et al. (2018) for Euro-
pean grapevine moth, by Doitsidis et al. (2017) for olive 
fruit fly, Bactrocera oleae (Rossi), and by Shaked et al. 
(2018) for other fruit flies species. To date, these devices 
are increasing in interest since they allow improving both 
spatial and temporal resolution in insect pest monitoring, 
creating the condition for a digital implementation of the 
management programs within the Internet of Things and 
the Big Data framework (Preti et al., 2021a). 

This work aimed to develop an innovative smart trap 
prototype equipped with a camera to perform a remote 
pest monitoring, selecting codling moth in pome fruit 

crops as ‘case study’. Assembling materials and elec-

tronic components have been selected considering the en-
vironmental sustainability and reporting the relevant eco-
nomic cost evaluations. A brand-new detection algorithm 
for captures identification and count has been developed 
and qualitative identification parameters such as accu-
racy, precision and sensitivity have been considered for 
this smart trap prototype. 
 
 
Materials and methods 
 
Construction of the smart trap prototype 

The smart trap prototype developed was composed of a 
hardware part, including the trap chassis, the power sup-
ply system, the sensors including the camera and any re-
lated electronics (figure 1), and by a software to service 
the remote monitoring, including the image transmission, 
the image analyser and the operator interfaces (figure 2). 

The chassis structure was composed of three major 
parts: (i) the upper cap, which contained all electric and 
electronic parts; (ii) the brim, which was designed to of-
fer coverage and protection for the sticky liner and the 
lure towards the atmospheric events; and (iii) the base, 
which included four columns and a removable bulkhead 
used to place the sticky liner on the base (figure 3). The 
upper cap box (111.2 mm of length × 91.5 mm of width 
× 65.0 mm of height) was compact, resistant and water-
proof. The trap brim had a pyramid trunk shape and pre-
sented holes for placing the anchoring systems to the 
plant and to the trap base. The base was rectangular- 
shaped (210.8 mm × 198.6 mm) and had holes to drain the 
water that may enter due to rain events. The trap chassis  

 
 

 
 

Figure 1. Schematic diagram of the smart trap prototype main components: the trap chassis, the power supply system 
and the electronics and sensors, including the camera for picture acquisition, represent the hardware part of the trap. 
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Figure 2. Schematic diagram of the software to service by remote the smart trap prototype: images transmission sys-
tem, image analyser and operator interface. 

 
 

 
 
 

Figure 3. Smart trap prototype design showing the chassis structure (measures in mm). A = trap brim (solar panels in 
black); B = trap base with the removable bulkhead to insert the sticky liner; C = upper cap containing the electronic 
box and the camera; D = trap prototype assembled. 

 
 
construction material was polylactic acid (PLA), a poly-
ester bioplastic produced from renewable resources and 
biodegradable (Su et al., 2019; Siakeng et al., 2019). Pol-
ylactic acid has a better ecological impact than other 
printable materials by using Fused Deposition Modeling 
(FDM) method (Faludi et al., 2015). A professional FDM 
3D printer Ultimaker S5 was used to produce the trap 
structure using the PLA filament. Per each trap device, 

653 g of PLA filament were used. A red PLA filament 
was selected since this colour does not impact negatively 
the codling moth captures and has no or little effect on 
the chromotropic attraction of beneficials and other non-
targets (Clare et al., 2000; Knight and Miliczky, 2003; 
Barros-Prada et al., 2013). 

The core of the electronic system was the ultra-low 
power EXPRESSIF microcontroller ESP 32, which 
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managed all the peripherals and the power system. This 
microcontroller was a hybrid Wi-Fi & Bluetooth pro-
grammable chip with high level of integration; it man-
aged and provided a communication stack to the periph-
erals through its SPI/SDIO or I2C/UART interfaces; it 
was based on Xtensa 32-bit LX6 microprocessor and the 
model used had just one core to maximize the low energy 
consumption. One of the relevant characteristics in the 
electronic system is the ultra-low power co-processor, 
which allowed the Analogic and Digital signal Conver-
sions (ADC), the computation and to manage the level 
thresholds during the deep sleep mode; it was equipped 
by 448 MB of Read Only Memory (ROM) and 520 MB 
of Static Random Access Memory (SRAM). The activa-
tion timing was managed by a Real-Time Clock (RTC) 
and needed 0.01 mA s−1 of current in deep sleep mode. 
The connected photo camera was an Omnivision 
OV5648 with a resolution of 5 Mpixel (retrieving up to 
2592 pixel × 1944 pixels of resolution). The minimum 
requirement of image sharpness for codling moth remote 
identification was defined according to what reported in 
Guarnieri et al. (2011). In the present work, the requested 
focus distance of the camera from the trap base was 22 
cm. The cone of vision covered an elliptic projection of 
17 × 19 cm, overlapping completely the whole size of the 
sticky liner (17 × 17 cm). In addition to the embedded 
communication systems, a GSM module was connected 
by UART interface. The GSM component was the 
SIMCom SIM800 chip. The electronic board needed to 
be powered by 5 V of voltage and 300 mA of current, in 
full working status. 

Two photovoltaic modules (12 V, 2 W each) powered 
the electronic components of the smart trap and in low so-
lar energy conditions, the power was granted by two lith-
ium rechargeable graphene Panasonic NCR18650B batter-
ies, which were connected in series. These batteries can 
supply 3500 mA as maximum current at 7.2 V (3.6 V each 

one) and need 8 V of charging voltage. The solar power 
was regulated by two monolithic integrated circuits 
LM2596 as step-down switching regulators (one per each 
voltage output). Since the battery temperature can increase 
due to external factors, such as the direct sun light over-
heat, or by charging cycle, the charging process was con-
trolled by a battery management system (BMS). The BMS 
circuit helped the battery life as well. The two photovoltaic 
panels were installed directly on the trap brim (figure 3). 

A GSM SIM card was used for sending data to the server 
by using GPRS connection. Pictures were univocally iden-
tified by a title reporting relevant information: each file 
was associated with a string reporting the monitoring field 
location and trap identification, and the day and time of 
picture acquisition. The electronic system was set to go in 
deep sleep mode for 5 minutes when the picture transmis-
sion system failed to send images for three consecutive 
times, and then it activates again to take another picture. 
This loop was set to be repeated twice and if picture send-
ing failure persisted due for instance to poor or unstable 
connection, the system was set to go in deep sleep mode 
until the next scheduled timing for picture acquisition. 

All acquired pictures were sent to the data server by us-
ing Secure Shell (SSH), which is a cryptographic network 
protocol to secure the operating services on the network. 
In the data server, the pictures were stored in a protected 
image repository where the detection algorithm executed 
the image analysis process. At the end of the image anal-
yses, all pictures information and analyses results were 
stored permanently in the database (DB). The server appli-
cation was database centric (figure 4). Thus, the database 
structure defined the subsystem working parameters and 
behaviour. All software subsystems (trap, analyser, 
webapp and Telegram bot) were dynamically driven by the 
database structure, such as the storage of the capture data 
information (figure 5), and the analyser learning parame-
ters. Human operator can visualize capture pictures in two 

 
 

 
 

Figure 4. Data flow representation with the database as core part of the smart trap application architecture. 
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Figure 5. Data storage system of the smart trap prototype developed for codling moth remote monitoring.  
 
 
forms: by using the Telegram bot in a smartphone and by 
using the webapp in a computer. The webapp used the 
stored information to display images with a user-friendly 
interface to allow the manual picture evaluation by user. 

The software technologies used to develop the all server 
side components were based on both Java Development 
Kit 1.8, which is the development environment for build-
ing applications, applets, and components using the Java 
programming language, and Python as scripting program 
language (Java, 2020; Python, 2020). Java was used to de-
velop the image analyser, webapp and Telegram bot soft-
ware, Python 2.7 for all scripts to manage the session and 
aggregation layers. The firmware on the trap was devel-
oped by using C programming language. All data were 
stored in a MongoDB database system. MongoDB is a 
document database that stores the data in JSON-like docu-
ments (MongoDB, 2020). JSON (JavaScript Object Nota-
tion) is a lightweight data-interchange format. The webapp 
was published on Internet by using Apache Tomcat® 
(v8.5) web server. The Apache Tomcat® software is an 
open source implementation of the Java Servlet, Ja-
vaServer Pages, Java Expression Language and Java Web-
Socket technologies (Apache Tomcat, 2020). All software 
were developed by using Eclipse platform, which is an ef-
fective integrated development environment (desRivieres 
and Wiegend, 2004). The Java project management and 
comprehension software tool Apache Maven (versions 
2018 and 2019) was used as repository and build environ-
ment for Java development (Apache Maven, 2020). 

Detection algorithm for automatic pest identification 
and count 

Automatic pest detection is a complex process divided 
in two main parts: (i) a preliminary image analysis per-
formed by an image analyser program; and (ii) a subse-
quent automatic pest classification performed by an arti-
ficial intelligence algorithm. 

The preliminary analyses of the images considered as 
input the pictures of the insect captures originated di-
rectly in field. After an image processing phase, the re-
turn output was a list of regions of interest, one for each 
possible target pest (in this case codling moth) occurring 
within the picture. Since the original photo was required 
to perform the human validation (checking for false neg-
ative and false positive results) and because computation 
and power resources on traps were limited, the analyses 
run on the server duplicating the picture, in order to have 
two adjacent and identical pictures: one unmodified and 
the other including the regions of interest marked by 
squares. In this work the preliminary image analysis pro-
cess was based on ImageJ1, an open source image-pro-
cessing program designed for scientific multidimensional 
images, specifically integrated in the server to run as soon 
as a new image arrived on the server (Schneider et al., 
2012; ImageJ, 2020). In order to reduce the effects of sun 
shadows and background interferences (in particular due 
to the glue of the sticky liners), the MorphoLibJ plugin 
was used for implementing a morphological filter (Mara-
gos, 2005; Legland et al., 2016). After the filtering, the 
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images were analysed with ImageJ particles extractor to 
get the list of particles. The parameters of the extractor 
were based on preliminary test images taken in different 
light conditions and on target pest morphological charac-
teristics provided by entomologist’s data, such as pest 

shape, minimum and maximum size and dominant col-
our. These parameters depend not only on the type of pest 
to be detected but also on trap configuration, in particular 
the camera specification and the distance from the cam-
era to the sticky liner. When the regions of interest were 
found, a watershed tool based on circularity divided over-
lapping pests to get a particle per each individual recog-
nized as target pest. In the webapp, the human operator 
could validate manually each particle automatically rec-
ognized by the detection system within every single pic-
ture derived by the smart trap. Per each particle of each 
picture, the user was asked to answer whether the marked 
item was or not the target pest, including possible com-
ments. 

The output of this image analysis displayed on the web 
interface for human validation was therefore used as in-
put for the automatic pest classification. The labelled im-
ages were used to create a Convolutional Neural Network 
(CNN), which is a state of the art regarding artificial in-
telligence process for image classification (Taylor and 
Nitschke, 2017; Ali et al., 2019). CNNs are inspired by 
biological processes such as the neural connectivity and 
they have the powerful feature to be independent from 
prior knowledge, making them suitable for a large variety 
of tasks. In this smart trap prototype, the development of 
the CNN model for pest classification is still in process, 
since this kind of powerful artificial intelligence frame-
work requires many data to provide significant results. 
For instance, for deep learning insect pest recognitions 
other authors report the usage of large scale datasets 
with more than 75,000 images (Khalifa et al., 2020 and 
references therein). In order to maximize the use of data, 
some data augmentation techniques were also used: start-
ing from a single image, eight different samples were cre-
ated using rotation and mirroring functions (Mikołajczyk 

and Grochowski, 2018). Tilted images, zoomed images 
and cropped images were not used to preserve the pro-
portion of the target pest. To implement this network and 
the data transformations, an open-source Java library, 
DeepLearning4j, was used, providing the environment to 
create a CNN and providing mechanisms to augment the 
data on the target pest. One of the features of DeepLearn-
ing4j is that the data augmentation happens 'on the fly': 
the different copies of the original classified image are 
created during the model creation/update and are not 
stored on disk. The classification model created by fol-
lowing this process was fixed and it was planned to up-
date it manually with a new one tweaking the parameters 
as soon as new data validated by human operators were 
classified and there was a significant change in the per-
formance. In this way, the improvements of the model 
were controlled by programmers and not automatic, with 
the possibility to make changes among consecutive model 
versions. As soon as the level of accuracy of the automatic 
detection algorithm is considered sufficient and the version 
of the model is stable, the model parameters will be ad-
justed automatically by using Deeplearning4j functions 

when new images validated by human operators will be 
produced. At the time of this work, validated data were 
in the order of hundreds. To provide a stable model, 
which automatically learns from human validations with-
out overfitting, data in an order of thousand are required. 
Therefore, in this work the model was managed and mod-
ified directly by programmers due to the limited number 
of samples. 
 
Economic evaluations: trap prototype cost and cost-
benefit analysis 

A trap cost estimation was calculated according to the 
actual expenses incurred to produce the smart trap proto-
type. The cost values, reported in euros, are referred to 
the purchase of the various hardware components in Italy 
and are updated to December 2020. Market value of such 
technologies is subject to fluctuation according to avail-
ability and demand, and it can be different across years 
and locations. Only the actual costs to make the smart 
trap prototype as described in this work were considered, 
without including the costs strictly related to a marketa-
ble product. Specifically, hardware components such as 
the PLA material, the camera, the electronic components, 
the power supply (batteries, solar panels and inverter), 
and the SIM card were all included in the economic eval-
uation, while other potential costs such as the fee to ac-
cess the web application and the data traffic consumption 
were not included. In fact, the latter aspects are not con-
siderable during the prototypal phase and can be calcu-
lated only on a finished product ready to be put on the 
market. For the trap construction, a forfait labour cost of 
25.00 € was estimated for the components assemblage, 

considering that this cost varies according to the number 
of devices produced simultaneously. In this study, it was 
assumed that all the necessary hand tools needed for con-
structing and assembling were freely available. 

Circumscribing the trap cost evaluation on the proto-
type version reported in this study, a cost-benefit analysis 
to monitor codling moth in pome fruit crops, in both ap-
ple and pear, by using either a conventional monitoring 
trap or the smart trap prototype was also estimated. To 
realize the cost-benefit analysis of the smart trap proto-
type, the following parameters were taken into account, 
referring specifically to Italy. 

Usually, in Italy, codling moth flights last from mid 
April until mid September and therefore it can be as-
sumed that the duration of its monitoring should be 5 
months (from early April until the end of August) to 
cover the three flights in pear crop and 6 months (until 
the end of September) in apple crop. Therefore, a weekly 
trap check can imply 20 or 24 field visits in pear or apple 
crop, respectively. By using the smart trap, it was as-
sumed to perform a minimum of 4 field visits for servic-
ing the traps: one for trap set up, two for lures and liners 
replacements and one at the end of the season. In addi-
tion, it was assumed not to have the sticky liners fre-
quently saturated by captures or debris and realistically 2 
supplementary field visits of the smart traps to replace 
sticky liners were also included, for an estimated total use 
of five liners during the whole season. A distance of the 
monitoring site of 25 km from the office and a travelling 
costs of 0.40 € km−1 were considered, therefore each field 
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visit resulted to cost 20.00 €. In addition, the travel time 
was estimated in 50 minutes roundtrip plus 10 minutes of 
trap check in situ, for a total of 1 hour of work. On the 
contrary, for the smart trap it was estimated to spend 10 
minutes for the daily trap check in remote by using the 
web interfaces and 6 checks per week were considered, 
for a total of 1 hour of work per week. Using the remote 
monitoring was considered to exploit the advantage of a 
more frequent trap check, increasing the time resolution 
6-fold compared to the weekly trap check in situ and 
maintaining the same man-hour usage. The labour cost 
was estimated in 10.00 € h−1 in all cases. Commercial 
standard monitoring traps, lures and liners costs were es-
timated specifically for codlemone-baited traps as aver-
age purchase costs from two different retailers and con-
sidering three different suppliers. 
 
Field validation and data collection 

Preliminary checks of the smart trap operativity, in-
cluding its resistance towards atmospheric events, the 
power supply autonomy, the data acquisition and sending 
efficiency by remote, and the visualization of pictures in 
the on-line repository have been tested outdoor over two 
consecutive seasons (2018 and 2019, data not shown) be-
fore the final field validation performed in 2020 and re-
ported in this work. Several prototype versions were re-
alized according to the need of improvements and adjust-
ments to satisfy the requirements reported in Preti et al. 
(2021a). Therefore, the latest prototype version of the 
smart trap corresponded to the minimum qualitative con-
ditions defined prior to the trap development begin, spe-
cifically: (i) a compact, small-sized, robust and water-
proof box containing all the electronics that work in au-
tonomy and controlled by remote; (ii) a high resolution 
camera set at the proper distance from the sticky liner to 
obtain sharp pictures of the captures, with the target pest 
clearly recognizable by remote; (iii) a sufficient power 
supply to guarantee an operativity of the prototype for 
more than 4 weeks; (iv) a data transmission system capa-
ble to automatically acquire, send, store and analyse pic-
tures; and (v) a low environmental footprint, considering 
low-cost recyclable assembling materials. Six identical 
devices of such smart trap prototype version were there-
fore produced for field evaluations. 

Field experiments were conducted from July to October 
2020 in both pear and apple organic orchards located in 
Emilia-Romagna Region (Italy) with known high infes-
tation levels of the target pest. Since the selected orchards 
were treated with MD for codling moth, traps were baited 
with pheromone-kairomone blends, using Pherocon® 
CM‐DA Combo-P (Trécé Inc., Adair, OK, USA), a new 
commercial binary lure comprised of a black PVC lure 
loaded with codlemone and pear ester and a white mem-
brane cup loaded with acetic acid. This proprietary binary 
lure has been recently proved to enhance codling moth 
captures in disrupted orchards due to its PVC formulation 
in comparison to standard septa lure, both combined with 
an acetic acid membrane co-lure (Preti et al., 2021b). The 
lures were placed directly on the stick liner in all traps. 
Traps were installed at 3 m of height inside the crop can-
opy and were placed at minimum 25 m from the orchard 
perimeter and apart. Traps were not rotated during field 

experiments and liners were not replaced. 
To evaluate the smart trap prototype trapping effi-

ciency, one trap comparison experiment was conducted 
in two pear orchards testing the automatic prototype and 
a standard monitoring orange delta-shaped traps, Phero-
con® VI (Trécé Inc.). In each location three pairs of traps 
(smart vs delta) were compared from July 21 until August 
18 recording the total codling moth captures per trap. 

To evaluate both the power autonomy and the detection 
algorithm exactness, the same six smart trap prototypes 
used for the trap comparison experiment were kept in the 
field until September 14, for a total test duration of 55 
days (first monitoring period). A second experiment to 
evaluate trap operativity in field condition was then run 
from September 16 until October 19 (35 days of test du-
ration) in an apple orchard, with six replicates of the 
smart trap prototype (second monitoring period). Pictures 
acquisition was set at two shoots per day, specifically at 
8:00 am and at 5:00 pm. Data on automatic counts (num-
ber of particles provided automatically by the detection 
algorithm as codling moth counts), manual counts (real 
number of codling moth captures provided by the human 
operator observing the pictures and confirmed by the di-
rect trap check in field), number of false positives (misi-
dentifications of codling moth wrongly provided by the 
detection algorithm) and number of false negatives 
(missed codling moth not recognized by the detection al-
gorithm) were recorded per each picture over the whole 
monitoring period. Other non-target insect species cap-
tured, including for instance flies (Diptera Muscidae), 
were also recorded both during picture validation and di-
rect field observation of the sticky liners, and their impact 
on the false positive counts was evaluated. At the end of 
each monitoring period, flies size was also measured to 
categorize this non-target according to its body length. 
 
Capture data elaboration 

Exploiting the automatic count, manual count, and 
number of false positive and false negative data per each 
picture collected, the following parameters were calcu-
lated: (1) False positive (%); (2) False negative (%); (3) 
Accuracy (%); (4) Sensitivity (%); and (5) Precision (%). 
The accuracy formula was adapted from Jiang et al. 
(2008 and 2013), while the sensitivity and precision for-
mulas were adapted from Wen et al. (2015) and Ding and 
Taylor (2016). 

(1) 𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (%) =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑢𝑡𝑜𝑚𝑎𝑡𝑖𝑐 𝑐𝑜𝑢𝑛𝑡𝑠
× 100 

(2) 𝐹𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 (%) =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑎𝑛𝑢𝑎𝑙 𝑐𝑜𝑢𝑛𝑡𝑠
× 100 

(3) 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (%) =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑢𝑡𝑜𝑚𝑎𝑡𝑖𝑐 𝑐𝑜𝑢𝑛𝑡𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑎𝑛𝑢𝑎𝑙 𝑐𝑜𝑢𝑛𝑡𝑠
× 100 

(4) 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 (%) =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑛. 𝑜𝑓 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑛. 𝑜𝑓 𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
× 100 

(5) 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (%) =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑢𝑡𝑜𝑚𝑎𝑡𝑖𝑐 𝑐𝑜𝑢𝑛𝑡𝑠
× 100 

Where the number of true positives is equal to the num-
ber of automatic counts minus the number of the false 
positive counts. 

Regarding the interpretation of the automatic detection 
algorithm parameters, the percentages of both false posi-
tive and false negative allow to evaluate the exactness of 
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the system for the target pest automatic identification and 
count. The detection algorithm is more reliable when 
both false positive and false negative percentages will be 
close to zero. An accuracy equal to 100% means that the 
number of items marked and counted automatically by 
the recognition algorithm corresponded to the number of 
target pest individuals present in the sticky liner (to be 
noted that also in case of simultaneous presence of equal 
numbers of false positive and false negative, the accuracy 
would be 100%). An accuracy lower than 100% means 
that there were target insects not recognized by the soft-
ware, therefore the automatic identification and count un-
derestimated the real pest occurrence. An accuracy 
higher than 100% means that there were non-target in-
sects or other items counted as the target pest by the soft-
ware, therefore the automatic identification and count 
overestimated the real pest occurrence (in this case, the 
false positives impact the accuracy overrating the effec-
tive codling moth numbers). Both values of sensitivity 
and precision can range between 0 and 100%. Values of 
sensitivity close to 100% mean that the occurrence of 
false negative is very low and therefore all the target pest 
individuals present are correctly detected by the auto-
matic system (showing that the algorithm is sensible to-
ward the target pest and it does not miss codling moths). 
Values of precision close to 100% mean that the occur-
rence of false positive is very low and therefore the total 
automatic detection corresponded to the correct codling 
moth detections (showing that the algorithm is precise 
and it does not mark non-target insects or other items).  

Regarding the non-targets, specifically for muscid flies, 
the percentage of flies counted as false positive was calcu-
lated, together with the percentage of flies detected by the 
algorithm out of the total flies present in the sticky liners. 
 
Statistical analyses 

Statistical analyses were performed with R software 
version 4.0.3 (R Core Team, 2020), including the pack-
ages lme4 (Bates et al., 2015) and multcomp (Hothorn et 

al., 2008). AIC (Akaike's Information Criteria) parameter 
and the residual distributions were considered to select 
fitted models. In all the analyses, the level of significance 
was set at P = 0.05. 

Captures data were found to fit normal distribution and 
therefore were analysed with a linear model (lm). In the 
trap comparison experiment, the two locations were con-
sidered together since there was no significant effect of the 
location on the moth captures (t value = 0.313; P = 0.761). 
To highlight differences between the smart trap prototype 
and the standard monitoring delta-shaped trap in terms of 
trapping efficiency, an ANOVA test was performed. 

To test differences among smart trap prototypes in 
terms of automatic pest detection, accuracy, sensitivity 
and precision data were analysed by using a generalized 
linear mixed-effects model (glmer) from lme4 package, 
fitting a Poisson distribution. The trap ID was considered 
as predictor, together with the number of real codling 
moth counts and the number of flies counted, both added 
as controlling variable. The number of real counts was 
added as a model weight, while the trap ID was also in-
cluded as random effect. A multiple comparison post-hoc 
test was performed on the fitted model (glht function 

from multcomp package). 
The effect of the flies captured on the number of parti-

cles automatically detected was analysed by using a 
glmer with Poisson distribution. The number of true pos-
itive counts was added as controlling variable, while the 
trap ID was included as random effect. 

Mean values are followed by Standard Error of the 
Mean (± SEM), unless otherwise specified. 
 
 
Results 
 
The smart trap prototype developed in this study proved 
to be operative in field condition, with an external struc-
ture robust and resistant to the atmospheric events. The 
power autonomy varied among the tested devices, result-
ing in a variable number of pictures provided. In fact, 
some devices were still active sending pictures for a few 
days after the field experiments ceased, showing an op-
eration lasting up to 8 consecutive weeks, while other de-
vices interrupted the picture sending prior to the end of 
each experiment. The failure in sending pictures that oc-
curred in some devices was likely due to connectivity is-
sues and in these cases the battery discharged rapidly, not 
allowing the remote validation of the captures for the 
whole monitoring period. During the first monitoring pe-
riod (July-September), three out of six devices inter-
rupted picture transmission after 5 days of operation or 
less, and therefore were excluded from data analysis on 
the detection algorithm exactness due to the reduced sam-
ples size. All six devices tested during this first monitor-
ing period were instead considered for capture data anal-
ysis since all traps captured codling moth. During the sec-
ond monitoring period (September-October), all traps 
were operative for minimum 4 weeks.  

The smart traps trapping efficiency was comparable to 
the one provided by standard monitoring delta-shaped 
traps, with no significant effect of the trap design (df = 2, 
9; F = 0.427; P = 0.665). Over the 4 weeks of field testing 
for trap design comparison, the smart traps captured on 
average 17.7 ± 3.1 codling moth, while the standard delta 
traps captured 13.5 ± 3.4 codling moth. 

The codling moth captures in the smart trap prototypes 
were clearly recognizable by human operator due to the 
high resolution of the camera (5 Mpixel) and the manual 
check of the images allowed to describe the codling moth 
capture trend by using the smart traps data, as exemplified 
in figure 6. However, the automatic counts provided by the 
detection algorithm did not match with the manual counts 
provided by the human operator. Accuracy, precision and 
sensitivity of the detection algorithm under development 
are reported in table 1 for the two monitoring periods. All 
three parameters were significantly different (P < 0.001) 
among traps in both monitoring periods. Accuracy was 
higher than 100%, overestimating 1.5-3-fold the real cap-
tures count. Sensitivity was inferior to 30%, showing that 
several codling moth captures were missed by the auto-
matic pest detection system, while the low precision re-
flected the abundance of false positive misidentifications. 

During the first monitoring period, a total of 352 pic-
tures derived from three smart trap prototypes were  
analysed. The average number of particles recognized    
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Figure 6. Codling moth captures reported as an example by one smart trap over the monitoring period July 21 - Sep-

tember 14 in a pear organic orchard treated with mating disruption. A = new daily captures; B = cumulative captures. 
 
 
Table 1. Exactness of the automatic detection algorithm at early stage development for codling moth. Accuracy, sen-

sitivity and precision of the algorithm were calculated on a limited sample dataset (pictures number into brackets).  
 

Monitoring period 
(total number of analysed pictures) 

Mean values (± SEM) 
Accuracy (%) Sensitivity (%) Precision (%) 

July-September a 
(352) 156.7 ± 6.2 28.1 ± 1.0 21.0 ± 0.7 

September-October b 
(332) 302.2 ± 20.0 26.5 ± 2.8 9.4 ± 1.2 
 

a Data resulting from three smart traps prototypes; b Data resulting from six smart trap prototypes. 
 
 
Table 2. Major non-targets represented by flies (Diptera Muscidae) that impacted negatively the exactness of the 

automatic detection algorithm developed for codling moth. 
 

Monitoring period 
(total number of flies captured) 

Mean values (± SEM) 

Number of flies 
captured 

Number of flies 
counted 

by the algorithm 

Flies counted 
out of the total 

present (%) 

False positive 
represented by 

flies (%)  
July-September a 
(38) 7.4 ± 0.3 4.2 ± 0.2 59.1 ± 1.7 30.6 ± 1.3 

September-October b 
(34) 1.4 ± 0.1 0.8 ± 0.1 59.3 ± 2.8 33.7 ± 2.3 
 

a Data resulting from three smart traps prototypes; b Data resulting from six smart trap prototypes. 
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automatically by the detection algorithm was 17.0 ± 0.6, 
while the real codling moth counts were on average     
13.4 ± 0.5 per picture. The automatic counts included 
79.0% ± 0.7 of false positives, while the false negatives 
were 72.2% ± 1.1. In the first period, over more than 6,000 
particles automatically marked and counted, about 4,600 
particles were false positives. These misidentifications 
included a small portion (8.2%) of double counts, i.e., 
codling moth individuals counted twice due to wings ex-
panded. The rest of false positives were represented 
mainly by shadows in the sticky liners, in a few cases by 
the lures, and by muscid flies. A total of 66 codling moth 
individuals and 38 flies were caught in three smart      
traps during the first monitoring period. The non-tar-
gets, measured to be classified according to their size, 
were mostly the same size of codling moth: 71.1% of 
captured flies had a body length comprised between 0.5 
and 1.0 cm, while 15.8% had a size smaller than 0.5 cm 
and 13.2% had a size comprised between 1.0 and 1.5 cm. 
On average, almost 60% of the flies captured in the smart 
traps were misidentified as codling moth and flies repre-
sented about 30% of false positive counts (table 2). 

During the second monitoring period, a total of 332 pic-
tures collected from 6 smart trap prototypes were analysed. 
The detection algorithm automatically recognized on aver-
age 3.3 particles per picture, while there were on average 
0.9 ± 0.1 codling moth individuals per trap. False positive 
misidentifications accounted for 90.7% ± 1.2 of the auto-
matic counts, while the false negatives were 72.8% ± 2.9. 
In the second period, over about than 1,100 particles auto-
matically marked and counted, about 1,000 particles were 
false positives. Similarly, to the first period, the majority of 
misidentification were due to shadows and flies, while the 
codling moths double counts were 2.4% of the false posi-
tive counts. In the second monitoring period, a total of 15 
codling moth individuals and 34 flies were captured in the 
six smart traps. Flies body size was inferior to 0.5 cm for 
14.7% of the captured flies, while 64.7% had a size com-
prised between 0.5 and 1.0 cm and 20.6% had a size com-
prised between 1.0 and 1.5 cm. Percentages of flies misiden-
tified were similar in the two monitoring periods (table 2). 
The total number of flies captured had a significant effect 
on the automatic counts both during the first and the second 
monitoring period (df = 348, z value = 11.95, P < 0.001 and 
df = 328, z value = 14.45, P < 0.001, respectively). 

Table 3. Hardware components and labour costs to pro-
duce a smart trap prototype equipped with camera for 
tortricid pests remote monitoring. 

 

Cost item Cost (€) 
Trap chassis a 50.00 
Controller board b  200.00 
Power supply - 2 batteries 15.00 
Power supply - 2 solar panels 30.00 
Power supply - 1 inverter 20.00 
Camera Omnivision OV5648 25.00 
SIM card 10.00 
Labour for construction c 25.00 
Total 375.00 
 

a Trap chassis cost includes the plastic material used per 
one device (at 25.00 € kg−1 of PLA) and the 3D printing 
expenses; b The controller board includes all the elec-
tronic components; c Forfait cost considering the com-
ponents assemblage executed by a trained person. 

 
 

The economic evaluation of the smart trap prototype 
construction is reported in table 3, while the cost compar-
ison of the classic monitoring with the remote monitoring 
is reported in table 4. The production of one smart trap 
prototype costed in total 375.00 €. When the smart trap is 

used in pear crop, monitoring codling moth for 5 months, 
the overall remote monitoring cost estimated is 1.2-fold 
higher compared to the classic monitoring in situ. When 
the smart trap is used in apple crop, for a longer monitor-
ing period (6 months), the cost of the remote monitoring 
is 1.1-fold higher than the classic one. An even longer 
monitoring period, increasing the number of field visits, 
can result in comparable costs. In both simulations, the 
remote monitoring compared to the classic monitoring in 

situ allows a 6-fold time resolution (i.e., 6 weekly data in 
comparison to the single direct trap check data in field). 
 
 
Discussion and conclusions 
 
Insect pest monitoring is crucial to predict when and 
where an insect pest will cause damage to a crop in order 
to prevent and counteract the pest infestations. It needs to 
be both efficient and reliable, and considering the limited  

 
 
Table 4. Costs of codling moth remote monitoring in pome fruit crops by using a smart trap prototype in comparison 

to a standard monitoring trap to be checked weekly in field. 
 

Cost item 

Cost (€) 
Pear Apple 

Smart trap 
prototype 

Standard 
monitoring trap 

Smart trap 
prototype 

Standard 
monitoring trap 

Trap device 375.00 15.00 375.00 15.00 
Lure and liners 15.00 15.00 15.00 15.00 
Field visits a 180.00 600.00 180.00 720.00 
Remote monitoring b 200.00 - 240.00 - 
Total 770.00 630.00 810.00 750.00 
 

a Trap set up, lures and liners replacements, trap removal at the end of the season, and all the trap checks in situ are 
included in this cost voice; b Six weekly checks by remote location for the whole codling moth flight season are 
considered in this cost voice. 
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resources available for direct field, scouting can be opti-
mized by using new technologies. The main advantages 
of using camera-equipped traps are the less time spent in 
field and the possibility to obtain a higher temporal reso-
lution data on the pest population dynamics. The remote 
monitoring offers the opportunity to avoid unnecessary 
field visits, limiting them to locations and periods that 
strictly require a direct scouting. In addition, it provides 
precise information about the timing of insecticide appli-
cations, delivering data on a daily basis in comparison to 
the weekly trap check, and allows to better exploit and 
implement the insect phenology forecasting models 
(Preti et al., 2021a). However, the remote monitoring 
with smart traps cannot replace completely the in-field 
scouting: a few field visits are required to install the smart 
traps and service them, replacing for instance lures and 
liners. Growers can potentially implement their pest 
monitoring and management programs by means of such 
technologies. Nevertheless, an effort to promote the 
smart traps development and adoption is required. In fact, 
to date the costs and partial knowledge of the advantages 
derived by the smart trap usage limit their potential use 
among growers. This work proposes the development of 
a brand-new smart trap prototype starting from the con-
struction materials and considering both environmental 
and economic sustainability; open-source programs were 
used to develop the automatic detection algorithm; the 
first results of the trap prototype field validation were 
provided in the early stage of its development and a cost-
benefit analysis was also considered to address the re-
mote monitoring cost matter. 

One issue encountered during the field validation was 
the limited power autonomy of some devices due to re-
peated failures in sending data. As reported in López et 

al. (2012), the highest power consumption of a smart trap 
is usually due to data transmission. In the present work, 
the poor or unstable connection of some devices affected 
negatively the operational life, rapidly discharging the 
battery due to multiple sending of pictures. However, in 
this study it was proved that with no data sending errors 
smart traps were operative for a minimum of 2 months. 
The power issue was caused by both not good network 
coverage on the tested field locations by all Italian GSM 
operators and not optimized cellular network technolo-
gies for the Internet of Things (IoT) and Mobile Edge 
Computing (MEC) (Giannotta et al., 2019). IoT consists 
of smart devices that communicate with each other (Al-
Sarawi et al., 2017), while MEC is an emergent architec-
ture, where cloud-computing services are extended to the 
edge of networks leveraging mobile base stations (Abbas 
et al., 2018). To reduce the encountered problems, a fea-
sible solution would be to implement an image compres-
sion algorithm that works on the very low power micro-
controller. Also increasing the energy power of the sys-
tem using very low-cost components (more accumulators 
and more performant solar panels) can be a practical and 
effective solution to ensure a longer operational life of 
the smart trap. In addition, the new 5G mobile technol-
ogy, which is designed to support the IoT devices to be 
permanently linked to the network with low energy con-
sumption (Giannotta et al., 2019), could help to solve the 
connectivity issues. 

Regarding the smart trap trapping efficiency, in a pre-
liminary 4-week duration trial the tested design was ca-
pable of capturing the target pest codling moth in compa-
rable numbers to standard monitoring traps. Extensive 
field evaluations of the proposed prototype design are re-
quired to further demonstrate the consistency in captures 
of the smart trap in comparison to a standard monitoring 
designs (usually the delta-shaped traps) to trigger control 
interventions at a given threshold. As reported in litera-
ture (Guarnieri et al., 2011; Knight and Light, 2005; 
Knight et al., 2019b), different factors can affect moth 
captures, including structural elements (such as trap 
shape and opening width, trapping surface size and adhe-
sive material) and operative decisions (such as trap posi-
tion within the canopy and its proximity to fruits). All 
these aspects need to be considered both for a further im-
provement of the smart trap design and for a correct de-
ployment of the monitoring traps in field. 

Despite the smart trap captured codling moth and pic-
tures collected provided a sufficiently high image resolu-
tion to manually validated moth captures by remote, the 
detection algorithm failed to automatically provide a 
trustworthy capture data. Deep learning validation with 
further pictures data is likely necessary to reach a suffi-
cient level of reliability in the automatic detection and 
count system. Similar studies on insect detection carried 
on with the same deep learning approach exploiting the 
CNN algorithm and few hundreds of pictures in the da-
taset concluded that one possible way to solve the target 
detection error was to augment the size of the dataset (Xia 
et al., 2018). In fact, a theoretical calculation proved that 
the error in the CNN algorithms class is correlated to the 
dataset size (Du et al., 2018). This study considered three 
qualitative parameters related to pest identification exact-
ness (i.e., accuracy, sensitivity and precision) in order to 
assess the status of the automatic detection algorithm. 
The obtained result were expected to be not satisfactory, 
since the smart trap was evaluated in an early stage of its 
development and the algorithm still needs to be alimented 
with more data to work properly. This evaluation basis 
will be useful for further validation of this prototype in 
the future and for comparison among prototypes and 
commercial smart traps. 

The percentage of either false positive or false negative 
allows to evaluate the exactness of the system for codling 
moth automatic identification and count. The detection 
algorithm can be judged reliable when both false positive 
and false negative percentages are close to zero. In fact, 
the abundance of false positive implicates overestima-
tions of the real captures, triggering control actions when 
not needed. On the contrary, the occurrence of false neg-
ative (i.e., underestimation of real pest pressure) can de-
lay or miss a necessary intervention involving a lower or 
lack of control. The algorithm outputs included a high 
number of both false positive and false negative counts, 
suggesting that adjustments of the detection algorithm 
are required. The flies automatically detected were simi-
lar in size to codling moth, which has a forewing length 
of 6.5-11.0 mm (TortAI, 2020). Therefore, additional pa-
rameters should be considered to better discriminate be-
tween codling moth and flies, such as an improved anal-
ysis of the light conditions when the picture is taken. This 
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is not a trivial process, as shadows and sunlight deeply 
change the colour perception from a machine point of 
view. To solve this issue, a build-it flash light could likely 
be exploited to improve the standardization of light con-
ditions during picture acquisition as successfully pro-
posed and adopted in previous related works (Selby et al., 
2014; Rassati et al., 2016). 

Regarding the smart trap cost-benefit analysis, the eco-
nomic calculation demonstrated that despite a slightly 
higher cost (1.1-1.2-fold) of the remote monitoring com-
pared to the classic monitoring, it was possible to in-
crease of 6-fold the time resolution, providing daily pic-
tures of the pest captures. This aspect is not negligible 
since a better optimization of the management practices, 
including a more efficient usage of insecticides, may im-
ply the grower incomes increase due to the reduced 
losses. Other authors described the convenience of smart 
trap usage. For instance, Ünlü et al. (2019) reported that 
the remote monitoring of tortricid pest in Turkish vine-
yards allowed to save money and time, with the smart 
trap cost recovery by avoiding just two field visits in iso-
lated and distant locations (125 $ of weekly field survey 
compared to 250 $ of smart trap production cost). Selby 
et al. (2014) demonstrated that the usage of a smart trap 
for research purposes to collect data on the daily insect 
pest activity over the 24 hours costed 78% less than em-
ploying a human observer and despite the initial cost of a 
smart trap was more expensive, its usage over time would 
amortize the cost compared to the man-powdered moni-
toring. Also in the present study, a longer use of the smart 
trap would widen the difference between the classic and 
remote monitoring, emphasizing the suitability of the lat-
ter one to reduce costs and improve quality. However, the 
cost-benefit analysis of this work considered a prototypal 
trap cost. Usually, a commercialized product includes 
also other cost items, such as the fee that a company ap-
plies for the access in the web application. In addition, a 
prototype cost evaluation has not considered variable 
costs depending on the data traffic consumption, the tech-
nical assistance and the training offered as services for a 
commercial smart trap, plus other extra features such as 
the inclusion of weather sensors and weather data avail-
ability in the trap device. A future economic evaluation 
including these parameters should consider commercial 
smart traps. In particular, considering either the purchase 
of a smart trap or the seasonal rent of this service. 

In conclusion, this study reports the process of a smart 
trap prototype development using the most updated tech-
nologies and including its preliminary field validation. A 
further improvement of such prototype needs to consider 
both the optimization of the data transmission related to 
the power autonomy, to ensure a complete operability 
over the entire monitoring season, and a refinement of the 
automatic detection algorithm, in order to allow a reliable 
machine-based count data delivery. In this case study it 
was proved that with a slight increase of the monitoring 
cost, the smart trap system was able to provide a consist-
ently higher temporal resolution of the capture data infor-
mation compared to the standard monitoring. Camera-
based insect pest monitoring is a different discipline than 
the area-wide remote sensing in entomology performed 

with airborne techniques based on spectral features (Ri-
ley, 1989; Nansen and Elliott, 2016). Nevertheless, de-
ploying smart traps in multiple locations to create a trap 
network (Potamitis et al., 2017), the remote monitoring 
with smart traps becomes area-wide and can be consid-
ered as a complementary approach to the remote sensing 
provided by satellite and aerial images. Data derived 
from both smart traps, placed locally in situ, and from 
remote images covering wider geographical areas (Abd 
El-Ghany et al., 2020) can be combined for a multidisci-
plinary detection, forecasting, and management of a 
number of insect pests and diseases in agricultural crops 
and forestry. 
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